

High Precision Time Projection Chamber Technology R&D for Future e+e- Collider

Huirong Qi on behalf of CEPC TPC Study Group and some inputs from LCTPC international collaboration

Institute of High Energy Physics, CAS July 19, 2024, Prague, Czech

- Motivation and physics requirements
- High precision TPC R&D
- Updated pixelated readout TPC R&D
- Summary

• Motivation and physics requirements

Motivation and physics requirements on e+e- collider

- A TPC is the main track detector for **some candidate experiments at future e+e- colliders**
 - Baseline detector concept of ALICE, STAR, CEPC CDR and ILD at ILC
 - TPC is a promised candidate as the main track detector in CEPC TDR
- TPC technology can be of interest for other future colliders (EIC, FCC-ee, KEKb...)
- Pixelated readout TPC is potential to **improve PID requirements of Flavor Physics** at e+e- collider.

https://arxiv.org/abs/1811.10545 Huirong Qi

Physics requirements on future circular e+e- collider

- **Phys. Requirements of the track detector**
 - TPC can provide thousands of hits with high spatial resolution compatible with PFA algorithm (low X_0)
- Beneficial for jet & differential at higher energy
 - BMR < 4% & pursue 3%
 - Highly requirements for excellent JOI & PID resolution (in Jets)
 - Provide $dE/dx + dN/dx \sim 2-3\%$

Differential Effic	Sub-D	Total Det. Performance	Domain	Processes @ c.m.s.	
Requirer	All sub-D, especially VTX	PFA + JOI (Jet origin id)	Higgs	vvH @ 240 GeV	H->ss/cc/sb
Ref: CDR	All	JOI + Particle (lepton) id	Flavor	WW@ 240/160 GeV	Vcb
Differential Mat	All	PFA + JOI	Higgs	vvH @ 360 GeV	W fusion Xsec
Bequirer	ECAL + Tracker material	PFA: Tau & Tau final state id	QCD	Z->tautau @ 91.2 GeV	α_{S}
Ref: CDR	All, especially Tracker & ToF	PFA + Particle (Kaon) id	Flavor	91.2 GeV	B->DK
Differential Resc	All	IOI	EW	Z	Weak mixing angle
Requirer	Tracker, All	Leptons id, track dP/P	Higgs	IIH	Higgs recoil
δ	All	PFA + JOI	Higgs	vvH	H->bb, cc, gg
δ	All	PFA + JOI + Color Singlet id	Higgs	qqH	
Ref: CDR	All	PFA	Higgs/NP	qqH	H->inv
	Calo, All	PFA, Leptons id	Higgs	qqH	H->di muon
Differential Pid C	ECAL, All	PFA, Photons id	Higgs	qqH	H->di photon
Requiren					
	NAN	Beam energy	EW	WW@160 GeV	W mass & Width
Ref: Nuc	NAN	Beam energy	EW	ttbar@360 GeV	Top mass & Width
Sep. power: On	All	Object in jets; MET	Flavor	Z	Bs->vvPhi
Requirer	All	-	Flavor	Z	Bc->tauv
Ref: CDR	ECAL	Particle/pi-0 in jets	Flavor	Z	B0->2 pi0
·					

iency.

ment: Pt threshold ~ o(100) MeV, |cos(theta)| < 0.99 baseline design

terial Budget.

ment: < 10%/50% X0 in Barrel/endcap baseline design + BMR & Material Dependence

olution of 5 track parameters.

ment: In the barrel δ (D0/Z0) ~ < 3 micro meter at 20 GeV $\delta(Pt)/Pt \sim o(0.1\%)$ baseline performance

Capability: eff*purity of Kaon id @ Z pole.

ment: eff*purity > 90% for all charged Kaon (@ Z pole) ~ relative resolution of dE/dx (or dN/dx) be better than 3% ToF of 50 ps

lear Inst. and Methods in Physics Research, A 1047 (2023) 167835

3 prong tau decay @ Z pole. ment: efficiency > 99% at 3-prong tau baseline performance

Physics requirements of the track detector

- CEPC operation stages: 10-years Higgs \rightarrow 2-years Z pole \rightarrow 1-year W
- CEPC phy./det. TDR (preparation)
 - Physics and detector concept designed under the principle.
 - Requirements may be with regard to runs of Higgs and Z-pole separately.
 - Mandatory requirements MUST be met.
 - Detector should primarily meet Higgs and run at Z also.

IMPRICATION AND AN INFORMENTATION INFORMED INFOR

Chapter 3 of this report outlines that the CEPC is planned to be in operation for 8 months annually, totaling 6,000 hours. This operational schedule is used to calculate the cumulative absorbed doses for magnet coil insulations, as illustrated in Figure 4.2.4.16, considering a 10-year Higgs operation, 2-year Z operation, and 1-year W operation. Figure 4.2.4.17 displays the absorbed doses when an additional 5-year $t\bar{t}$ operation is included. These plots also include the upper limit for absorbed dose in epoxy resin, which is measured at 2×10^7 Gy [11].

CEPC- TDR p116

• High precision resolution TPC R&D

Roadmap of CEPC TPC detector R&D

- CEPC TPC detector prototyping roadmap:
 - From TPC module to **TPC prototype R&D for Higgs and Tera-Z**
 - Easy-to-install modular design of Pixelated readout TPC for CEPC TDR
- Achievement by far:
 - IBF \times Gain ~1 @ G=2000 validation with hybrid TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ and dE/dx resolution of 3.6%
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

TPC prototype with integrated 266nm UV laser

Achievement

Highlights of TPC prototype integrated with 266nm UV laser tracks

• Highlights of CEPC TPC R&D and toward reasonable pixelated readout TPC

- Massive production and assemble MPGD lab has been setup at IHEP
- TPC prototype integrated 266nm UV laser tracks has been studied and analyzed the UV laser signal, all are pretty good to Higgs run.
- Track reconstruction and the spatial resolution of Pad readout TPC prototype are analyzed.

Publications by CEPC TPC group in 2018-2024:

- https://doi.org/10.1088/1748-0221/18/08/E08002
- https://doi.org/10.22323/1.449.0553
- https://doi.org/10.1016/j.nima.2022.167241
- https://doi.org/10.1109/NSS/MIC44867.2021.9875566
- https://doi.org/10.1109/NSS/MIC44845.2022.10399097
- https://doi.org/10.1088/1748-0221/15/09/C09065
- https://doi.org/10.1088/1748-0221/15/05/P05005
- <u>https://dx.doi.org/10.1142/S0217751X20410146</u>
 <u>https://doi.org/10.1088/1674-1137/41/5/056003</u>
- https://doi.org/10.1088/1748-0221/15/02/T02001
- https://doi.org/10.1088/1748-0221/12/07/P07005

Track detector system in CEPC Phy.&Det. TDR

- The track detector system's geometry finalized.
 - All of physics simulation used the updated geometries for CEPC TDR document
 - Silicon combined with gaseous chamber as the tracker and PID
 - **Baseline:** Pixelated readout TPC as the **main track (MTK)** from radius of 0.6m to 1.8m

Geometry of the track detector system in CEPC IDK

• Updated pixelated readout TPC R&D

Pixelated readout TPC technology for CEPC TDR

- A pixelated readout TPC is **a good option to provide realistic physics requirements** of Higgs Physical and Tera-Z Physics also (2E36) at CEPC.
 - Pixelated readout \rightarrow better resolution \rightarrow low gain \rightarrow less distortion
- **Highlights** of Pixelated readout TPC technology for CEPC TDR
 - Can deal with high rates (MHz/cm²)
 - High spatial resolution \rightarrow better momentum resolution
 - PID: dE/dx + dN/dx (**In space**)
 - Excellent two tracks separation

Operation on high luminosity Tera-Z at 2 Tesla

Huirong Qi

Improved dE/dx+dN/dx in space

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, a 3σ separation at 20GeV with 50cm drift length can be achieved
- dN/dx has significant potential for **improving PID resolution**

DOI: 10.22323/1.449.0553 EPS-HEP 2023 talk by Yue Chang Huirong Oi

Simulation of TPC detector under 3T/2T and T2K mixture gas

Reasonable channels and power consumption \checkmark

- Power consumption relative with the high granularity readout
 - Pad readout TPC@1mm×6mm pad size
 - Total channels: 10^6 ; Total power: <10 kW using 2-phase CO₂ cooling
 - Pixelated readout TPC at the endcap
 - Total power: <10 kW
 - 2-Phase CO₂ cooling
 - <100mW/cm²
 - ASIC chip and TPC prototyping R&D

	PASA+ALTRO	Super-ALTRO	SAMPA	WASA_v1
TPC	ALICE	ILC	ALICE upgrade	CEPC
Pad Size	4x7.5 mm ²	1x6 mm ²	4x7.5 mm ²	1x6 mm²
No. of Channels	5.7× 10 ⁵	$1\text{-}2 imes10^6$	$5.7 imes10^5$	2 x×10 ⁶
Readout Detector	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
Gain	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
Shaper	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
Peaking time	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
Waveform Sampler	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
Sampling Rate	10 MHz	40 MHz	10 MHz	10-100 MHz
Sampling Resolution	10 bit	10 bit	10 bit	10 bit
Power: AFE	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
Power: ADC	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MHz
Power: Digital Logics	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MHz
Total Power	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MHz
CMOS Process	250 nm	130 nm	130 nm	65 nm

Optimization concept option: Pixelated readout TPC $@\cos\theta \approx 0.98$

Parameters	Higgs run	Z pole run
B-field	3.0T	2.0T
Readout size (mm)/All channels	0.5mm×0.5mm/2×3×10 ⁷	0.5mm×0.5mm/2×3×10 ⁷
Material budget barrel (X ₀)	0.59%	0.59%
Material budget endcap (X ₀)	15%	15%
Points per track in rφ	2300	2300
σ in rφ	120μm (full drift)	400μm (full drift)
σ in rz	≃ 0.1 – 0.4 mm (for zero – full drift)	≃ 0.2 – 0.8 mm (for zero – full drift)
2-hit separation in r ϕ	0.5mm	0.5mm
K/ π separation power @20GeV	3σ	3σ
dE/dx	3.2%	3.2%
Momentum resolution	a = 1.210 e -5	a = 2.69 e -5
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.589 e -3	b = 0.90 e -3

Prototype validation of pixelated TPC for CEPC TDR

- **R&D on Pixelated TPC readout for CEPC TDR**
 - Pixelated readout TPC ASIC chip developed and 2nd prototype wafer has done and tested.
 - The TOA and TOT can be selected as the initiation function in the ASIC chip
 - $500\mu m \times 500\mu m$ pixel readout designed
 - Noise of FEE: 100e
 - Time resolution: 14bit (5ns bin)
 - Power consumption: ~100mW/cm²

• Prototyping pixelated readout TPC detector

• The validation of the prototype assembled

Photo and layout of ASIC Chip R&D for TPC

- TPC detector prototype R&D using the pad readout towards the pixelated readout for the future e+e- colliders, espial to the high luminosity Z pole run at future e+e- collider.
- Pixel TPC is in the simulation framework has been developed using Garfied++ and Geant4 at IHEP. To analyze the simulate the performance of the high luminosity Z pole run at CEPC, some validation of TPC prototype have been studies.
- Synergies with CEPC/FCCee/EIC/LCTPC allow us to continue R&D and ongoing, we learn from all of their experiences..

We kindly acknowledge the following funding agencies, collaborations:

- > National Key Programme for S&T Research and Development (Grant NO.: 2016YFA0400400)
- National Natural Science Foundation of China (Grant NO.: 11975256)
- National Natural Science Foundation of China (Grant NO.: 11535007)
- National Natural Science Foundation of China (Grant NO.: 11775242)
- National Natural Science Foundation of China (Grant NO.: 11675197)