Drift chamber with cluster counting technique for CEPC

Mingyi Dong

On behalf of CEPC drift chamber group

ICHEP2024, 17–24 Jul 2024, Prague

Outline

- Introduction of drift chamber with dN/dx technique
- Performance study and prototype tests
- Preliminary mechanical design and FEA
- Overall scheme for electronics
- Summary

The Circular Electron Positron Collider

- The CEPC was proposed in 2012 after the Higgs discovery. It aims as an e⁺e⁻ Higgs / Z Factory.
- To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- It is possible to upgrade to a pp collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. /IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. /yr (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ^{_1} , 2 IPs)	Total no. of events
Н*	240	10	50	8.3	2.2	21.6	$4.3 imes 10^6$
			30	5	1.3	13	$2.6 imes 10^6$
Z	91	2	50	192**	50	100	$4.1 imes 10^{12}$
			30	115**	30	60	2.5×10^{12}
W	160	1	50	26.7	6.9	6.9	$2.1 imes 10^8$
			30	16	4.2	4.2	$1.3 imes 10^8$
tī	360	5	50	0.8	0.2	1.0	$0.6 imes 10^6$
			30	0.5	0.13	0.65	0.4 × 10 ⁶

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

** Detector solenoid field is 2 Tesla during Z operation, 3 Tesla for all other energies.

*** Calculated using 3,600 hours per year for data collection.

Drift Chamber in CEPC 4th conceptual detector

Solenoid Magnet (3T / 2T) **Between HCAL & ECAL**

Advantage: the HCAL absorbers act as part of the magnet return yoke.

Challenges: thin enough not to affect the jet resolution (e.g. BMR); stability.

Transverse Crystal bar ECAL

Advantage: better π^0/γ reconstruction. Challenges: minimum number of readout channels; compatible with PFA calorimeter; maintain good jet resolution.

A Drift chamber that is optimized for PID

Advantage: Work at high luminosity Z runs Challenges: sufficient PID power; thin enough not to affect the moment resolution.

PID is essential for CEPC, especially for flavor physics

- A drift chamber between the two outer layers of Si tracker, optimized for its PID power
- Require better than 3σ separation power for K/π with momentum up to 20GeV/c
- Benefits tracking and momentum measurement

Ionization measurement with dN/dX

dE/dx

- dN/dx: Measure number of clusters over the track, which corresponds to the number of the primary ionization
- Yield of primary ionization is Poisson distribution
- Small fluctuation
- dN/dx has a much better (2 times) K/π separation power up to 20 GeV/c compared to dE/dx (Simulation)

Key issues with dN/dx measurement

- Detector optimization and performance study
 - dN/dx resolution and PID capability
 - Geometry of the detector
 - Mechanical structure, Material budget
 - Gas mixture: low drift velocity, suitable ionization density gas with low diffusion and low multi electron ionization
- Waveform test
 - Fast and low noise electronics
- dN/dx reconstruction algorithm
 - Identifying primary and secondary ionization signals
 - Reducing noise impacts
 - Improve the reconstruction efficiency

Performance study and Detector R&D

Waveform-based full simulation

Machine learning reconstruction algorithm

- LSTM-based peak finding and DGCNN-based clusterization
- ~ 10% improvement of PID performance with ML

Long Short-Term Memory (LSTM)-based peak finding higher efficiency than the derivative-based algorithm, especially for the pile-up recovery

dN/dx Resolution

The reconstructed n_{cls} distributions are very well Gaussian-like

- dN/dx resolution (1.2 m track length):
 - 2.5%-2.6% for Pion
 - 2.6%-2.7% for Kaon

- 1.2 m track length
- For 20 GeV/c K/π, Separation power: 3.2σ

Momentum Resolution

$$\sigma(1/p_t) = a \pm b/p_t$$

	Higgs	Z-pole
a (1/GeV)	2.1×10 ⁻⁵	3.2×10 ⁻⁵
b	0.77×10 ⁻³	1.16×10 ⁻³

Momentum resolution is comparable with TPC at Higgs and Z mode

Detector R&D and beam test

Electron beam

- Scintillator
- Developed fast and high bandwidth preamps
- Tested with electron beam at IHEP
 - Two drift tubes + preamps + ADC (1GHz)
 - Two scintillators provide trigger signals

Preliminary results

- Clear peaks
- Rise time : ~ ns
- The performance of preamplifiers:
 - Low noise
 - high bandwidth

Readout electronics design

- A readout prototype system is developed to verify basic functions, consisting of an ADC board and an FPGA board. will be integrated into one board in next version
- The ADC board is based on two high-speed ADCs (ADI AD9695), 14 bit resolution, and a maximum sampling of 1.4 Gsps

Synergy with IDEA, Collaboration with INFN

- Beam tests organized by INFN group:
 - Two muon beam tests performed at CERN-H8 (βγ > 400) in Nov. 2021 and July 2022
 - A muon beam test (from 4 to 12 GeV/c) in 2023 performed at CERN
 - Test in 2024 is under going to fully exploit the relativistic rise (starting on July 10).
- Contributions from IHEP group:
 - Participate data taking and collaboratively analyze the test beam data
 - Develop the machine learning reconstruction algorithm

Nicola De Filippis, 2023 CEPC workshop, Nanjing 23-27, 2023

Track Angle:

He:IsoB(80/20)

0.8 driftte180

Preliminary design of mechanics and Readout scheme

Overall mechanical design

End plates + CF frame structure

CF frame structure

- CF frame structure: 8 longitudinal hollow beams + 8 annular hollow beams + inner CF cylinder and outer CF cylinder
 - Length: 5800 mm
 - Inner diameter: 1200 mm, Outer diameter: 3600 mm
- Each End plate: including 4 steps, thickness: 20 mm, weight: 880 kg

Wire tensions

	Cell number/step	Average length (mm)	Single sense wire tension (g)	Single field wire tension (g)	Total tension/step (kg)
step1	9172	5668	86.92	133.56	4472.08
step2	7528	5122	70.98	109.07	2997.38
step3	5845	4526	55.43	85.16	1817.14
step4	3939	3928	41.75	64.14	922.46
total	26483				10209

Diameter of field wire (Al coated with Au) : $60\mu m$ Diameter of sense wire (W coated with Au): $20\mu m$ Sag = 280 μm

Meet requirements of stability condition:

$$T > (\frac{VLC}{d})^2 / (4\pi\varepsilon_0)$$

Finite element analysis

Max: +2.703e-03

- Max Mises tress of End plate : 30MPa
- Endplate deformation
 2.7mm

- Max Mises tress of CF frame : 235MPa
- CF frame deformation 1.1mm

The structure is stable

Preliminary readout scheme of Drift Chamber

2.8mm per co-ax

12 signals + 1 Power

3dB attenuation @ 280MHz

Considering : radiation hardness Power consumption, Material budget

FEE-1:

Rad-hard analog preamps FEE-2:

ADC and FPGA board for data readout and buffering, put in low dose region

High Bandwidth Preamp 100mW/ch -> ~2.6kW in total

1.3kW for each end plate, air cooling is OK no additional material budget

0.5Gbps/12 channels--

compatible with requirement of CEPC overall readout scheme $_{\rm 20}$

Preliminary design parameters

R extension	600-1800mm		
Length of outermost wires $(\cos\theta=0.85)$	5800mm		
Thickness of inner CF cylinder: (for gas tightness, without load)	200µm		
Thickness of outer CF cylinder: (for gas tightness, without load)	300µm		
Outer CF frame structure	Equivalent CF thickness: 1.8 mm		
Thickness of end Al plate:	20mm		
Cell size:	~ 18 mm × 18 mm		
Cell number	27623		
Ratio of field wires to sense wires	3:1		
Gas mixture	He/iC ₄ H ₁₀ =90:10		

Summary

- R&D progress of CEPC drift chamber:
 - Simulation studies show that 3.2 σ K/ π separation at 20GeV/c can be achieved with 1.2m track length
 - Fast electronics development is under progress. Preliminary tests validated the performance of the readout electronics and the feasibility of dN/dx method
 - Cluster counting reconstruction algorithm with deep learning shows promising performance for MC samples and test data
 - Preliminary mechanical design and FEA show the structure is stable
 - Global electronics scheme is reasonable
- Further study plan
 - Fine detector optimization
 - Optimize deep learning algorithm and FPGA implementation
 - Prototyping and testing with full-length cells (mechanics, manufacturing, testing)

Thanks for your attention

Garfield++ simulation

