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The Circular Electron Positron Collider

* The CEPC was proposed in 2012 after the Higgs discovery. It aims as an e*e” Higgs / Z Factory.

e To produce Higgs /W / Z / top for high precision Higgs, EW measurements, studies of flavor
physics & QCD, and probes of physics BSM.

* Itis possible to upgrade to a pp collider (SppC) of v/s ~ 100 TeV in the future.
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Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

I P 1 ** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.
*#% Calculated using 3,600 hours per year for data collection.



Drift Chamber in CEPC 4t conceptual detector

Solenoid Magnet (3T / 2T)
Between HCAL & ECAL

Scint Glass Advantage: Cost efficient, high density
PFA HCAL Challenges: Light yield, transparency,

massive production.

Advantage: the HCAL absorbers act as part
of the magnet return yoke.

Challenges: thin enough not to affect the jet
resolution (e.g. BMR); stability.

——— Transverse Crystal bar ECAL

Advantage: better n%y reconstruction.

Challenges: minimum number of readout
channels; compatible with PFA calorimeter;
maintain good jet resolution.

A Drift chamber
that is optimized for PID

Advantage: Work at high luminosity Z runs

Challenges: sufficient PID power; thin
enough not to affect the moment resolution.

Muon+Yoke  Si Tracker Si Vertex

PID is essential for CEPC,
especially for flavor physics

e Adrift chamber between the
two outer layers of Si tracker,
optimized for its PID power

e Require better than 30
separation power for K /i
with momentum up to
20GeV/c

e Benefits tracking and

\momentum measurement/




lonization measurement with dN/dX

dN /dx Peak finding dE /dx
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e dN/dx: Measure number of clusters over the track, which
corresponds to the number of the primary ionization

 Yield of primary ionization is Poisson distribution

e Small fluctuation

* dN /dx has a much better (2 times) K /m separation power BN
up to 20 GeV/c compared to dE /dx (Simulation) ! o

Momentum (GeV/cp

K /m separation power




Key issues with dN/dx measurement

e Detector optimization and performance study
e dN/dx resolution and PID capability
e Geometry of the detector
e Mechanical structure, Material budget
e Gas mixture: low drift velocity, suitable ionization density gas with low diffusion
and low multi electron ionization
e Waveform test
e Fast and low noise electronics

e dN/dx reconstruction algorithm
 |ldentifying primary and secondary ionization signals
e Reducing noise impacts
* Improve the reconstruction efficiency



Performance study and Detector R&D



Waveform-based full simulation
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Machine learning reconstruction algorithm

e LSTM-based peak finding and DGCNN-based clusterization
e ~10% improvement of PID performance with ML

Long Short-Term Memory (LSTM)-based peak finding
higher efficiency than the derivative-based algorithm,
especially for the pile-up recovery
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dN/dx Resolution
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Detector R&D and beam test

Electron beam

Scintillator
e Developed fast and high bandwidth preamps

e Tested with electron beam at IHEP
e Two drift tubes + preamps + ADC (1GHz)
* Two scintillators provide trigger signals Scintillator

Drift tubes (032)
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Preliminary results
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CH1 Input

CH2 Input

CH3 Input

CH4 Input

* Areadout prototype system is developed to verify basic functions, consisting of an A
board. will be integrated into one board in next version

Readout electronics design
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DC board and an FPGA

e The ADC board is based on two high-speed ADCs (ADI AD9695), 14 bit resolution, and a maximum sampling of

1.4 Gsps
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Synergy with IDEA, Collaboration with INFN

e Beam tests organized by INFN group:

e Two muon beam tests performed at CERN-H8 (By > 400) in Nov.
2021 and July 2022

* A muon beam test (from 4 to 12 GeV/c) in 2023 performed at CERN
e Test in 2024 is under going to fully exploit the relativistic rise
(starting on July 10).
e Contributions from IHEP group:

» Participate data taking and collaboratively analyze the test beam
data

e Develop the machine learning reconstruction algorithm
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Preliminary design of mechanics
and Readout scheme



Overall mechanical design

End plates + CF frame structure CF frame structure

Cross section of
longitudinal HB :
80mm*40mm,

i thickness: 3.2mm

] Cross section of
annular HB :
40*10mm
Thickness: 3.2mm

- 3760 -
5800

e CF frame structure: 8 longitudinal hollow beams + 8 annular hollow beams + inner CF cylinder and outer CF cylinder
* Length: 5800 mm
* Inner diameter: 1200 mm, Outer diameter: 3600 mm

e Each End plate: including 4 steps, thickness: 20 mm, weight: 880 kg 17




Wire tensions

Average Single sense Single field Total tension/step
Cell number/step length (mm) wire tension (g) wire tension (g) (kg)

stepl 9172 5668 86.92 133.56 4472.08
step2 7528 5122 70.98 109.07 2997.38
step3 5845 4526 55.43 85.16 1817.14
step4d 3939 3928 41.75 64.14 922.46
total 26483 10209
Diameter of field wire (Al coated with Au) : 60um Meet requirements of stability condition:

Diameter of sense wire (W coated with Au): 20pum
Sag = 280 um

vic,
I > (—)7/(4meo)



Finite element analysis
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Preliminary readout scheme of Drift Chamber

Considering : radiation hardness
Power consumption,

Material budget

FEE-1:

Rad-hard analog preamps

FEE-2:

ADC and FPGA board for data readout
and buffering, put in low dose region
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1.3kW for each end plate, air cooling is OK
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CEPC overall readout scheme20



Preliminary design parameters

R extension 600-1800mm
Length of outermost wires (cos6=0.85) 5800mm

Thickness of inner CF cylinder: (for gas tightness, without load) 200pm

Thickness of outer CF cylinder: (for gas tightness, without load) 300um

Outer CF frame structure Equivalent CF thickness: 1.8 mm
Thickness of end Al plate: 20mm

Cell size: ~18 mm x 18 mm

Cell number 27623

Ratio of field wires to sense wires 3:1

Gas mixture He/iC,H,,=90:10



Summary

e R&D progress of CEPC drift chamber:

e Simulation studies show that 3.20 K/mt separation at 20GeV/c can be achieved with 1.2m
track length

e Fast electronics development is under progress. Preliminary tests validated the
performance of the readout electronics and the feasibility of dN/dx method

e Cluster counting reconstruction algorithm with deep learning shows promising
performance for MC samples and test data

e Preliminary mechanical design and FEA show the structure is stable
e Global electronics scheme is reasonable

e Further study plan
e Fine detector optimization
e Optimize deep learning algorithm and FPGA implementation
e Prototyping and testing with full-length cells (mechanics, manufacturing, testing)

Thanks for your attention



Backup



Gain

Garfield++ simulation

Gain vs HV
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