Neutron Scattering Studies and Quenching factor measurements with SPC

Neha Panchal NEWS-G, Queen's University, Canada

ICHEP, Prague July 2024

NEWS-G

- NEWS-G experiment searches for Light Dark Matter
- Uses SPCs as detector: Metallic vessel filled with a noble gas mixture, with a single high voltage anode
- Low mass target atoms increases sensitivity to lowmass dark matter
- Low capacitance (~10 pF) decreases electronic noise and Townsend avalanche provides large gain
- Single ionization detection threshold!

SPC: working principle

- Atomic recoil causes ionization of the gas.
- Primary electrons drift towards the central anode.
- Townsend avalanche near the anode amplifies the signal.
- Drifting secondary ions induce a current on the anode.

Quenching factor

Definition

- Dark matter sensitivity: Very important to know actual nuclear energy spectra
- As nuclear recoil and an electronic recoil of same energy do not produce same amount of primary ionization

$$QF(E_{nr}) = \frac{E_{ee}}{E_{nr}}$$

Past measurement at TUNL

- Quenching factor measurements at TUNL (Duke tandem facility)
- The nuclear recoil energies covered were 0.34 to 10 keVnr

Marie et al.

Phys. Rev. D. Vol. 105, No. 5, 052004 (2022)

Current plans

UdeM tandem accelerator: planning to do QF measurements

- Possibility to go to ~10 times lower energy than TUNL ~5keV
- ⁵¹V(p,n) as target offering large number of near threshold resonances
- Better rejection to gamma background by B-10
 neutron capture
- Working on building a new backing detector

New Backing Detector

- The Backing Detector is an annulus structure
- Provides better angular coverage
- Based on n-capture on Li
- Detection efficiency 27% at 2keV
- Mean neutron capture time 17usec

Pratyush Patel et al.

Neutron scattering @ Queen's

 \dot{Q}^{-} To observe the scattered neutrons from SPC using a source in lab.

Motivation

- A crucial step towards in-beam experiment
- Establishing the DAQ and analysis tools
- Easy access to systematic investigation:
 - different gas mixture
 - gas pressure
 - gas volume (sphere size)
 - ionization voltage
- Characterization tool for new gases and sensor
 designs in the future

Experiment

➣ 5 cm PE for neutrons

Experiment

Setup: Pictures

Experiment

Setup: DAQ

Sample pulse

Sample gamma pulse acquired with CoMPASS

Sample pulse

Sample neutron pulse acquired with CoMPASS

PSD cut

Event Discrimination in SPC

- Drift time in an SPC is proportional to the radial position of the event
- Two types of events: point-like and track-like
- Point-like event:
 - risetime is an indicator of the diffusion of electrons moving towards anode
 - Risetime is proportional to drift-time

Event Discrimination in SPC

- Drift time in an SPC is proportional to the radial position of the event
- Two types of events: point-like and track-like
- Track-like events:
 - risetime is no longer governed by the diffusion time of the electrons
 - difference in the arrival time of the e- closer and farther to the anode
 - Risetime is higher than the point-like case

SPC signal

Results from Ar mixture (S15)

First observation in Ar (+ simulation)

Different gases: Ne and Ar @ 1 bar

Observed Rate ~ 30 mHz

ICHEP 2024

Different pressures: Ne @ 1 and 2 bar

Different HV: Ne (1 bar)

Different HV: Ne (2 bar)

ICHEP 2024

Summary of measurements

Cog mirturo	$V_{oltomo}(V)$	$a \; (ms^{-1})$			
Gas mixture	vonage (v)	Experiment	Simulation		
Ne + 2% CH ₄ (1 bar)	800	4.3 ± 0.2	4.69 ± 0.07		
Ne + 2% CH ₄ (1 bar)	900	3.8 ± 0.2	4.53 ± 0.08		
Ne + 2% CH ₄ (2 bar)	1200	2.42 ± 0.06	2.74 ± 0.04		
Ne + 2% CH ₄ (2 bar)	1300	2.17 ± 0.05	2.65 ± 0.06		
Ne + 2% CH ₄ (2 bar)	1400	2.24 ± 0.07	2.71 ± 0.06		
$Ar + 2\% CH_4(1 bar)$	2000	5.6 ± 1.1	7.4 ± 0.1		

Conclusions

- Past measurements at TUNL in Ne + CH4 by Marie et al.,
- Working towards QF measurements at UdeM
- New backing detector is being built
- Neutron scattering observed in a table top experiment with AmBe source as a crucial step towards QF measurement with neutron beam
- The manuscript for neutron scattering work is accepted for publication in NIM-A

Backup slides

Rate Estimation

Monte Carlo simulation

- Simple MC simulation by Irina to calculate the geometric factor
- Assumed Isotropic distribution of neutron-gas
 interactions in SPC
- **10%** total interactions in SPC will be recorded in the liquid scintillator

$$rate = (neutron \ rate_{source})\sigma_{Ar} l(\frac{N_A}{V_{m,stp}})(\frac{\Omega_{source \rightarrow sphere}}{4\pi})$$

Rate ~ 300 mHz for 1 bar Ne

Rate ~ 30 mHz

ELJEN TECHNOLOGY

Ele	ectrons	P	rotons	A	lphas	Ca	arbon						
MeV	# Photons	BESPONSE OF EL 300 LIQUID SCINTILLATOR											
0.10	1,230	0.10	83	0.10	20	0.10	13	RESIGNSE OF EF-509 EROED SCINTIELATOR					
0.13	1,600	0.13	109	0.13	26	0.13	16	SCINTILLATION LIGHT PRODUCED VS. PARTICLE ENERGY					
0.17	2,090	0.17	148	0.17	33	0.17	19	106					
0.20	2,460	0.20	180	0.20	39	0.20	22						
0.24	2,950	0.24	226	0.24	47	0.24	26						
0.30	3,690	0.30	303	0.30	60	0.30	31						
0.34	4,180	0.34	357	0.34	69	0.34	34						
0.40	4,920	0.40	449	0.40	83	0.40	39						
0.48	5,900	0.48	594	0.48	102	0.48	45						
0.60	7,380	0.60	834	0.60	133	0.60	54						
0.72	8,860	0.72	1,119	0.72	166	0.72	62						
0.84	10,330	0.84	1,445	0.84	204	0.84	70						
1.00	12,300	1.00	1,921	1.00	258	1.00	81						
1.30	15,990	1.30	2,934	1.30	371	1.30	100	ELECTRONS CONTRACTOR					
1.70	20,910	1.70	4,502	1.70	542	1.70	125						
2.00	24,600	2.00	5,812	2.00	691	2.00	143						
2.40	29,520	2.40	7,688	2.40	923	2.40	168						
3.00	36,900	3.00	10,652	3.00	1,353	3.00	204	F PROTONS					
3.40	41,820	3.40	12,817	3.40	1,679	3.40	230						
4.00	49,200	4.00	16,322	4.00	2,232	4.00	269						
4.80	59,040	4.80	21,131	4.80	3,143	4.80	320						
6.00	73,800	6.00	28,413	6.00	5,006	6.00	398						
7.20	88,560	7.20	36,285	7.20	7,466	7.20	477						
8.40	103,320	8.40	44,526	8.40	10,701	8.40	555						
10.00	123,000	10.00	55,965	10.00	16,236	10.00	664						
13.00	159,900	13.00	78,228	13.00	28,905	13.00	878						
17.00	209,100	17.00	108,609	17.00	49,569	17.00	1215						
20.00	246,000	20.00	132,840	20.00	66,912	20.00	1494						
24.00	295,200	24.00	166,050	24.00	91,143	24.00	1888						
30.00	369,000	30.00	217,710	30.00	128,166	30.00	2539						
34.00	418,200	34.00	252,150	34.00	153,012	34.00	3028	Data Source: V.V. Verbinski et al, Nucl. Instrum. & Meth. 65 (1968) 8-25					
40.00	492,000	40.00	305,040	40.00	190,650	40.00	3843	$10_{0.1}$ 1 1 10 100					
								PARTICLE ENERGY (MeV)					

ELJEN TECHNOLOGY

				This is ca	alculated from	the elastic	scattering of	cross section	ns for proto	ns and ca	arbons
Neutron	Lin. Attn.	Neutron	Lin. Attn.								
Energy	Coeff.	Energy	Coeff.								
MeV	Σ(cm ⁻¹)	MeV	Σ(cm ⁻¹)		LINEAR AT	TENUATIO	ON COEFF	ICIENT FOR	R FAST NE	JTRONS	5
0.2	0.2500	6.8	0.0617			IN EJ-3	09 LIQUID	SCINTILLA	ATOR		
0.3	0.224	7.0	0.0600	0.25 -							
0.4	0.2100	7.2	0.0585	0.20							
0.5	0.1970	7.4	0.0565								
0.6	0.1870	7.6	0.0548		\						
0.7	0.1790	7.8	0.0534	0.20							<u> </u>
0.8	0.1725	8.0	0.0520	÷.							
0.9	0.1665	8.2	0.0510	E E							
1.0	0.1620	8.4	0.0500	[€] 0.15							
1.2	0.1520	8.6	0.0490	N N							
1.4	0.1450	8.8	0.0483	L L							
1.6	0.1380	9.0	0.0475	<u> </u>							
1.8	0.1320	9.2	0.0468	일 이 있는 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이							<u> </u>
2.0	0.1258	9.4	0.0460	- E							
2.2	0.1210	9.6	0.0456	ō							
2.4	0.1160	9.8	0.0452	0.05							<u> </u>
2.6	0.1114	10.0	0.0444								
2.8	0.1068	10.2	0.0438								
3.0	0.1020	10.4	0.0431	0.00							
3.2	0.0980	10.6	0.0422	0.00 +	2	4	c	0	10	1	2
3.4	0.0938	10.8	0.0413		2	4	0	0	10		2
3.6	0.0898	11.0	0.0407				NEUTRON	ENERGY	(MeV)		
3.8	0.0860	11.2	0.0399								
4.0	0.0820	11.4	0.0390								
4.2	0.0788	11.6	0.0384								
4.4	0.0775	11.8	0.0376			FAST NE	JTRON DE	TECTION			
4.6	0.0775	12.0	0.0369		EJ-30	09 and Simi	lar Eljen Pl	astic Scintill	ators		
4.8	0.0777	12.2	0.0366		CAL	CULATED	DETECTIO	N EFFICIEI	NCY		
5.0	0.0766	12.4	0.0362		Σ:	0.132	0.0766	0.0444	0.0325		
5.2	0.0750	12.6	0.0357		Scint		Neutron	Energy			
5.4	0.0735	12.8	0.0355		Thickness	2.5MeV	5MeV	10MeV	14MeV		
5.6	0.0717	13.0	0.0350		50mm	0.483	0.318	0.199	0.150		
5.8	0.0697	13.2	0.0344		25mm	0.281	0.174	0.105	0.078		
6.0	0.0680	13.4	0.0338		10mm	0.124	0.074	0.043	0.032		
6.2	0.0666	13.6	0.0335		1mm	0.013	0.008	0.004	0.003		
6.4	0.0649	13.8	0.0330		0.25mm	0.0033	0.0019	0.0011	0.0008		
6.6	0.0632	14.0	0.0325		0.05mm	0.0007	0.0004	0.00022	0.00016		

	0.121	0.011	0.010	0.002
1mm	0.013	0.008	0.004	0.003
0.25mm	0.0033	0.0019	0.0011	0.0008
0.05mm	0.0007	0.0004	0.00022	0.00016

How the detector works

