LiquidO: Neutrino Detection and Imaging in Opaque Media

Stefan Schoppmann ^D for the LiquidO Collaboration (he/him/his)

Johannes Gutenberg-Universität Mainz

42nd International Conference on High Energy Physics – ICHEP

18th July 2024

- The Idea behind LiquidO's Opacity
- Opaque Scintillators
- LiquidO Prototypes
- Derived Projects

• Summary

- → Transparent liquid scintillator:
 - \rightarrow energy depositions converted into scintillation light
 - \rightarrow topology is washed out when scintillation light propagates
- \rightarrow Energy depositions happens on smaller scale
 - \rightarrow opaque medium confines lights to its point of creation
 - \rightarrow preserve timing information of order 2ns
 - \rightarrow light-readout via grid of fibres
 - \rightarrow particle-ID through vertex resolution at cm-scale
 - $\rightarrow\,$ e.g. electron/gamma discrimination of 1000/1 possible
 - → http://doi.org/10.1038/s42005-021-00763-5

±lcm

-20

-10

- \rightarrow instrumented by grid of wavelength-shifting/scintillating fibres
- \rightarrow good scalability due to uni-directional design
- \rightarrow z-direction via timing and/or crossing fibres

- \rightarrow SiPM readout of fibres
- \rightarrow sub-100ps timing resolution
 - → https://doi.org/10.1109/RTC.2014.7097545

 \rightarrow amount of light: >400 PE/MeV

Potential

Potential

Stefan Schoppmann 🝺

Current projects:

- → reactor physics with AntiMatter-OTech/CLOUD (https://doi.org/10.5281/zenodo.10049846):
 - \rightarrow monitoring, oscillations
- \rightarrow medical imaging with LPET (https://doi.org/10.5281/zenodo.7556760)
 - $\rightarrow\,$ positron discrimination for PET-scanners
- \rightarrow geoneutrinos (http://arxiv.org/abs/2308.04154):
 - \rightarrow metal loading to lower energy threshold
 - \rightarrow access potassium decays
- \rightarrow muon tracking:
 - \rightarrow improved spatial and angular resolution

Future projects:

- \rightarrow particle trackers (https://doi.org/10.5281/zenodo.7645760):
 - \rightarrow multiple avenues for particle ID and momentum measurements
- → solar neutrinos (http://doi.org/10.1038/s42005-021-00763-5):
 - \rightarrow indium loaded detector to observe pp-neutrinos

- \rightarrow particle-ID for tagging of coincidence
- \rightarrow supernova neutrinos (https://doi.org/10.5281/zenodo.7504162):
 - \rightarrow simultaneous observation of neutrino and anti-neutrino CC via positron and electron tagging

 \rightarrow search for 0v2 β (https://zenodo.org/doi/10.5281/zenodo.7645430 / https://zenodo.org/doi/10.5281/zenodo.7645450):

 \rightarrow high isotope loading

Scintillators

- \rightarrow several options
 - → liquid scintillator + wax (NoWaSH): http://doi.org/10.1088/1748-0221/14/11/P11007
 - → liquid scintillator + water + surfactant (oWbLS): https://doi.org/10.48550/arXiv.2406.13054
 - \rightarrow mirco-crystals: https://doi.org/10.48550/arXiv.1807.00628
- \rightarrow opacity through scattering without absorption (Mie scattering, scattering length of millimetres)
- \rightarrow scattering length tunable via:
 - → NoWaSH: wax type / wax concentration / temperature (in some NoWaSH formulations)
 - \rightarrow water+surfactant concentration (oWbLS)
- \rightarrow high metal loading possible
 - \rightarrow relaxed requirement on absorption length
 - \rightarrow proof of principle via boron / TBB in NoWaSH

LiquidO collaboration (J. Apilluelo et al.), arXiv:2406.13054

Prototypes

LiquidO: Neutrino Detection and Imaging in Opaque Media

PRISMA+

- \rightarrow 250 ml volume
- \rightarrow goal: proof of principle
- \rightarrow readout via three fibres and PMT demonstrated in opaque scintillator (NoWaSH)
- $\rightarrow\,$ opacity via scattering without absorption confirmed
- → http://doi.org/10.1038/s42005-021-00763-5

Medium Optical Properties

Mini-LiquidO

- \rightarrow 10 litres detector
- $\rightarrow\,$ goal: light ball formation and characterisation
- → 56 wavelength-shifting fibres read-out in 2 orthogonal directions
- → narrow-energetic electron beam from ⁹⁰Sr source tunable between 0.4 and 1.8 MeV
- \rightarrow operated @ LP2i Bordeaux, France

data taking since 2021 including runs with:

- \rightarrow wax-based liquid scintillator: NoWaSH-20 in transparent and opaque mode (temperature dependent, 5 to 40°C)
- \rightarrow transparent scintillator

3-inch PMT

Plastic support

Aluminium cove with two inlets for water flow

> Aluminium radiator

> > B3 WLS fibres

Delrin tank

Temperature dependent opacity of NoWaSH leads to confinement of light compared to transparent reference

90% (80%) [50%] of light confined within 5cm (4cm) [2cm] radius

Mini-LiquidO: Pulse Shape

Derived Projects

LiquidO: Neutrino Detection and Imaging in Opaque Media

AntiMatter-OTech/CLOUD

Chooz B nuclear reactor site in France 4.2 GW thermal power (single core)

AntiMatter-OTech (innovation project):

 \rightarrow reactor monitoring

CLOUD (fundamental physics extension to AntiMatter-OTech)

- \rightarrow phase I: reactor physics
- \rightarrow phase II: solar neutrinos
- \rightarrow phase III: geo-neutrinos

More details on CLOUD: Diana Navas Nicolás Neutrino physics session Saturday, 20th July, 17h00

Further Derived Projects

- → LiquidO: opaque detector technology (http://doi.org/10.1038/s42005-021-00763-5)
 - \rightarrow brought spectrum of applications
 - \rightarrow improved vertex resolution possible
 - → improved particle identification possible (electron/positron/gammas)
 - \rightarrow pulse shape discrimination achievable
 - \rightarrow particle tracking
 - \rightarrow high metal loading
- \rightarrow opaque scintillator
 - → millimetre-scale scattering length
 - \rightarrow similar properties as transparent scintillator basis
 - \rightarrow several options:
 - → http://doi.org/10.1088/1748-0221/14/11/P11007
 - \rightarrow https://doi.org/10.48550/arXiv.2406.13054
 - \rightarrow https://doi.org/10.48550/arXiv.1807.00628
- \rightarrow current/future derived projects:
 - → AntiMatter-OTech/CLOUD (reactor neutrinos) https://doi.org/10.5281/zenodo.10049846
 - \rightarrow LPET (medical imaging)
 - https://doi.org/10.5281/zenodo.7556760

→ Super Chooz pathfinder (large scale, multi-purpose) https://doi.org/10.5281/zenodo.7504162

Conclusions

- → LiquidO: opaque detector technology (http://doi.org/10.1038/s42005-021-00763-5)
 - \rightarrow brought spectrum of applications
 - \rightarrow improved vertex resolution possible
 - → improved particle identification possible (electron/positron/gammas)
 - $\rightarrow\,$ pulse shape discrimination achievable
 - → particle tracking
 - \rightarrow high metal loading
- \rightarrow opaque scintillator
 - → millimetre-scale scattering length
 - \rightarrow similar properties as transparent scintillator basis
 - \rightarrow several options:
 - \rightarrow http://doi.org/10.1088/1748-0221/14/11/P11007
 - \rightarrow https://doi.org/10.48550/arXiv.2406.13054
 - \rightarrow https://doi.org/10.48550/arXiv.1807.00628
- \rightarrow current/future derived projects:
 - → AntiMatter-OTech/CLOUD (reactor neutrinos) https://doi.org/10.5281/zenodo.10049846
 - \rightarrow LPET (medical imaging)
 - https://doi.org/10.5281/zenodo.7556760
 - → Super Chooz pathfinder (large scale, multi-purpose) https://doi.org/10.5281/zenodo.7504162

Candle built from NoWaSH (opaque wax-based scintillator)

~100 members 26 institutes 11 countries

LiquidO-Contact-L@in2p3.fr https://liquido.ijclab.in2p3.fr

J. Apilluelo², L. Asquith^b, E. F. Bannister.^b, J. L. Beney^p, M. Berberane Santos^k, X. Bernardie^p, T. J. C. Bezerra^b,
M. Bongrand^p, C. Bourgeois^{qa}, H. Boutalha^{qa}, D. Breton^{qa}, M. Briere^{qa}, C. Buck¹, J. Bustoⁿ, K. Burns^{qa}, A. Cabrera^{qa,c,2},
A. Cadiou^p, E. Calvo¹, V. Chaumat^{qa}, E. Chauvean^f, B. J. Cattermole^b, M. Chen^h, P. Chimenti¹, T. Cornet^{qa},
D. F. Cowen^{2a,x,β}, C. Delafosse^{qa}, S. Dusini^{ra}, A. Earle^b, C. Frigerio-Martins¹, J. Galán², J. A. García², R. Gazzini^{qa},
A. Gibson-Foster^b, A. Gallas^{qa}, C. Girard-Carillo^{ma}, B. Gramlich¹, M. Grassi^{2,tβ}, W. C. Griffith^b, J. J. Gómez-Cadenasⁿ,
M. Guitière^p, F. Haddad^p, J. Hartnell^b, A. Holin^d, G. Hull^{qa}, I.G. Irastorza^z, I. Jovanovic^a, L. Koch^{ma}, P. Lasorak^b,
J. F. Le Du^{qa,c}, C. Lefebvre^h, F. Lefevre^p, F. Legrand^{qa}, P. Loaiza^{qa}, J. A. Lock^b, G. Luzón^z, J. Maalmi^{qa}, J. P. Malhado^j,
F. Mantovani^{ea,e,β}, C. Marquet^f, M. Martínez^z, B. Mathon^{qa}, D. Navas-Nicolás^{qa,1}, H. Nunokawaⁱ, M. Obolensky²,
J. P. Ochoa-Ricoux^s, T. Palmeira^k, C. Palomares¹, B. Pedras^k, D. Petyt^d, P. Pillot^p, A. Pin^f, J. C. C. Porter^b, M. S. Pravikoff^f,
H. Ramarijaona^{qa}, N. Rodrigues^k, M. Roche^f, R. Rosero^y, P. Rosier^{qa}, S. R. Soleti^u, H. Th. J. Steiger^{ma,mβ}, D. Stocco^p,
V. Strati^{ea,e,β}, J. S. Stutzmann^p, F. Suekane^v, A. Tunc^{ma}, N. Tuccori^b, A. Verdugo^l, B. Viaud^p, S. M. Wakely^{ma}, A. Weber^{ma},

*Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA ^bDepartment of Physics and Astronomy, University of Sussex, Brighton, United Kingdom ^cLNCA Underground Laboratory, CNRS, EDF Chooz Nuclear Reactor, Chooz, France ^dRutherford Appleton Laboratory, Didcot, Oxford, United Kingdom ^{cα} INFN, Sezione di Ferrara, Ferrara, Italy ^{e^βDipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy} ^fUniversité de Bordeaux, CNRS, LP2I Bordeaux, Gradignan, France ⁸Department of Physics and Astronomy, University of California at Irvine, Irvine, CA, USA ^hDepartment of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Canada ⁱDepartamento de Física, Universidade Estadual de Londrina, Londrina, Brazil ^jDepartment of Chemistry, Imperial College London, London, United Kingdom ^kiBB, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal ¹CIEMAT. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain ^{ma}Johannes Gutenberg-Universität Mainz, Institut f
ür Physik, Mainz, Germany ^{mβ}Johannes Gutenberg-Universität Mainz, Detektorlabor, Exzellenzcluster PRISMA⁺, Mainz, Germany ⁿUniversité de Aix Marseille, CNRS, CPPM, Marseille, France ^PNantes Université, IMT-Atlantique, CNRS, Subatech, Nantes, France ^{qa} Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France ^r^aINFN, Sezione di Padova, Padova, Italy ^{*#}Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy ^sInstitute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic ¹Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil ^uDonostia International Physics Center, Basque Excellence Research Centre, San Sebastián/Donostia, Spain ^vRCNS, Tohoku University, Sendai, Japan ^{xa}Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, USA ^{x^βDepartment of Physics, Pennsylvania State University, University Park, PA, USA} ^yBrookhaven National Laboratory, Upton, NY, USA ²Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain

Appendix

Motivation – Liquid Organic Scintillators

(2016) 093001

43 വ

<u>ں</u>

Basic principle:

- \rightarrow carbon-hydrogen-based molecules
- \rightarrow conjugated especially aromatic molecules
- → scintillation mostly through benzene-like groups
- \rightarrow shifting of initial UV-light towards blue/green
 - \rightarrow addition of wavelength shifters (WLS)
 - \rightarrow matching with sensitivity of photosensors

Advantages:

- cost effective (large volumes)
- high light yield \rightarrow
- light output (almost) linear to incident energy \rightarrow

- transparency \rightarrow
- self-shielding against radiation
- clean / multiple purification
- \rightarrow volume flexibility
- modifiable (blending/loading)

Amount of light collected by each of the 56 fibres

Positron Emission Tomography

traditional PET:

- \rightarrow transparent scintillator crystals
- \rightarrow limited vertex resolution due to crystal size
- \rightarrow expensive (only ring of crystals)

3-gamma imaging:

- \rightarrow single prompt gamma from ⁴⁴Sc tracer decay
- \rightarrow 2 delayed annihilation gammas from positronium decay
- \rightarrow opaque low-Z material:
 - \rightarrow directionality resolution via Compton-scatters
 - $\rightarrow\,$ track prompt gamma to origin of delayed gammas

 \rightarrow novel imaging via material-dependent in vivo lifetime measurement of

ortho-positronium

Geoneutrinos from Potassium

Stefan Schoppmann 厄

AMOTech/CLOUD

Preliminary design: Inner detector: ~8 tonnes fiducial opaque scintillator / ~10000 fibres / >200 PE/MeV Outer detector: transparent scintillator / ~180 PMTs / >400 PE/MeV Shielding: concrete+iron / ~3 m.w.e.

Stefan Schoppmann i D

