

Calibration of the JUNO Detector

Yankai Liu, Qingmin Zhang

Xi'an Jiaotong University

On behalf of the JUNO collabration

Jul. 18th, 2024

Outline

- ➢ Introduction of JUNO Calibration
- JUNO Calibration Strategy
- JUNO Calibration System Status
- ➤ Summary

Jiangmen Underground Neutrino Observatory (JUNO)

- **Primary goal is to determine the neutrino mass** ordering by detecting \overline{v}_e ($\overline{v}_e + p \rightarrow e^+ + n$)
- \geq **JUNO Structure:**
 - Diameter: 35.4 m
 - Acrylic sphere: filled with 20 kton liquid • scintillator (LS)
 - PMT: ~17612 20-inch and ~25600 3-inch • PMTs for central detector (CD), ~2400 20inch PMTs for water pool (WP)
- **Challenges for calibration:**
 - Energy nonlinearity (Energy dependent)
 - Detector non-uniformity (Position dependent) ٠

PPNP 123 (2022) 103927

JUNO Calibration System

Comprehensive calibration system:

- 1D central axis scan:
 Automatic Calibration Unit (ACU)
- 2D plane scan:
 Cable Loop System (CLS)
- 2D boundary scan:

Guide Tube Calibration System (GTCS)

• 3D scan:

Remotely Operated Vehicle (ROV)

- > Calibration strategy:
 - Calibrate the energy nonlinearity
 - Calibrate the detector non-uniformity

Meet the stringent requirements:

- Energy scale uncertainty < 1%
- Energy resolution < 3% at 1 MeV

ACU: JINST 16 T08008 (2021) CLS: NIM A 988 164867 (2021) GTCS: JINST 14 T09005 (2019) GTCS: JINST 16 T07005 (2021) ROV: JINST 13 T12001 (2018)

JUNO Calibration Strategy

> Energy nonlinearity:

- Energy dependent
- Dominantly contain physical nonlinearity and instrumental nonlinearity
- Multiple radioactive sources calibration @ACU

- Detector non-uniformity:
 - Position dependent
 - Geometrical effects and photon propagation
 - Comprehensive calibration scan

@ACU+CLS+GTCS

Non-uniformity correction map

Energy Nonlinearity Calibration

- > Determine the NMO by measuring \overline{v}_e energy spectrum:
 - $\bar{v}_e + p \rightarrow e^+ + n$
 - $E_{\overline{v}} \sim E_{e^+} + 0.8 \text{ MeV}$
 - The prompt signal energy range is 1-8 MeV
- > Physical nonlinearity:
 - Quenching effect and Cherenkov photon emission
 - Different energy corresponds to different detected nPEs/MeV
 - Multiple radioactive sources calibration @ACU

Radioactive sources/Processes	Туре	Energy [MeV]	Radioactivity
²⁴¹ Am	γ	0.0595	~100 Bq
²²⁶ Ra	γ	0.186	~100, 500, 1000 Bq
¹³⁷ Cs	γ	0.662	~100 Bq
⁵⁴ Mn	γ	0.835	~100Bq
⁶⁰ Co	γ	1.173 + 1.333	~100 Bq
40 K	γ	1.461	~20 Bq
⁶⁸ Ge	e ⁺	annihilation 0.511 + 0.511	~100 Bq
²⁴¹ Am- ⁹ Be	n, y	neutron + 4.43 ($^{12}C^*$)	~30 neutrons/s
²⁴¹ Am- ¹³ C	n, y	neutron + 6.13 (¹⁶ O*)	~100 neutrons/s
$(n,\gamma)p$	γ	2.22	
$(\mathbf{n},\boldsymbol{\gamma})^{12}\mathbf{C}$	γ	4.94 or 3.68 + 1.26	

6/16

Energy Nonlinearity Calibration

> Instrumental nonlinearity:

- LPMT has nonlinearity between the received nPEs and the measured charge
- Laser source on the detector center avoids the physical nonlinearity and non-uniformity
- Calibration method: LPMT and SPMT dual calorimetry + tunable laser source

- Requirement for calibration:
 - Energy scale uncertainty < 1%
- ➢ Systematic uncertainty on energy scale ~0.7%:
 - Dominant components:

Residual bias of positron energy nonlinearity ~0.3% Instrumental nonlinearity ~0.3%

> Meet the energy scale uncertainty requirement

Non-uniformity Calibration

Position dependent:

- Geometrical effects (e.g. solid angle) and photon propagation (e.g. total reflection at R = 15.7 m)
- Calibration in different positions
 @ACU+CLS+GTCS
- > Requirement for calibration:
 - Energy resolution < 3% at 1 MeV

•
$$\frac{\sigma_{E_{vis}}}{E_{vis}} = \sqrt{\left(\frac{a}{\sqrt{E_{vis}}}\right)^2 + b^2 + \left(\frac{c}{E_{vis}}\right)^2}$$

- a statistical term, ~2.7%
- b constant term, dominated by non-uniformity
- c contribution of a background noise term, ~1%

Light yield function of the radius and the polar angles $\boldsymbol{\theta}$

Non-uniformity Calibration

> Non-uniformity function:

- 250 calibration points
 1D central axis ACU, Am-C
 2D plane CLS, Am-C
 2D boundary GTCS, Am-Be
- Energy spectrum fitting

 $S_{vis} = S_{edep} \otimes \text{resolution} \equiv S_{peak} + S_{tail}$ Correction function: The light yield in different position

Non-uniformity Calibration

> Non-uniformity correction:

• Use the gamma non-uniformity correction map to adjust the

Birks Law + Frank-Tamm Formula model

• Use the adjusted model to predict the positron energy resolution

Positron energy resolution after calibration

Requirement for calibration:

- Energy resolution < 3% at 1 MeV
- b term < 1% after calibration
- ➢ Effective energy resolution < 3%:</p>

•
$$\tilde{a} \equiv \sqrt{a^2 + (1.6 \times b)^2 + \left(\frac{c}{1.6}\right)^2}$$

Meet the energy resolution requirement

Calibration of the JUNO Detector

10/16

JUNO Calibration System Status

- Comprehensive calibration system:
 - ACU: 1D, 100% completion in the lab, waiting for the installation
 - CLS: 2D, installation is underway, inside the CD parts are installed 100%
 - GTCS: 2D, installation is underway, outside the CD parts are installed 70%
 - ROV: 3D, waiting for the installation

CLS

ACU

CTCS

11/16

ACU Status

> ACU:

- 1D central axis calibration system
- Calibrate the nonlinearity and partial non-uniformity
- Turntable for source selection as well as the laser deployment
- Validate using a custom length recorder to measure the bias
- Better than 10 mm positioning accuracy

Calibration of the JUNO Detector

18/07/2024 ICHEP 2024

Custom length recorder

CLS Status

> CLS:

- 2D plane calibration system
- Calibrate the detector non-uniformity in a vertical plane
- Can't calculate the position by the cable length
- Validate using USS (UltraSonic positioning System) and CCD camera
- Better than 30 mm positioning accuracy

CLS

Positioning light source (left) and CCD layout (right)

GTCS Status

> GTCS:

- 2D boundary calibration system
- Calibrate the detector boundary non-uniformity
- Validate using positioning sensors to correct the bias
- Better than 30 mm positioning accuracy
- Finished 70% installation on the detector surface

18/07/2024 ICHEP 2024

14/16

ROV Status

> ROV:

- 3D calibration system calibrates the detector non-uniformity
- Submarine with umbilical cable for radioactive source deployment
- Validate using USS to meet the 30 mm/5 min positioning accuracy

Umbilical cable

- The calibration subsystems are produced and tested well, installed partially.
- Based on the calibration strategy, after the calibration, the energy scale uncertainty is better than 1% and the detector energy resolution is better than 3% at 1 MeV.

Thanks!