Characterization and Understanding of Novel 8-inch Microchannel Plate Photomultiplier Tubes

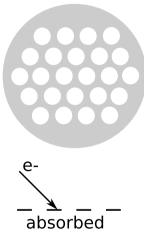
Benda Xu

in cooperation with

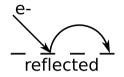
Jun Weng, Aiqiang Zhang, Qi Wu, Lishuang Ma, Sen Qian, Zhe Wang and Shaomin Chen

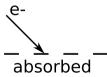
Tsinghua University, Center for High Energy Physics

2024-07-18 ICHEP2024 @ Praha

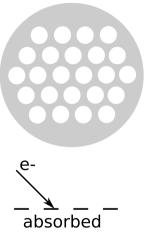

Photons Are Precious at Neutrino¹ Scintillation Calorimetry

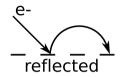
- Photons are precious information carriers in rare event searches.
- Uncertainties of photon counting determines energy resolution.
- Needs high photon detection efficiency.


¹or dark matter

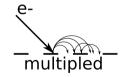


• \checkmark collection efficiency < 70%.



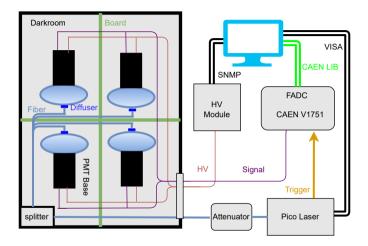


• X collection efficiency \rightarrow 100%, but noticeable delay.



• \checkmark collection efficiency < 70%.

• X collection efficiency ightarrow 100%, but noticeable delay.

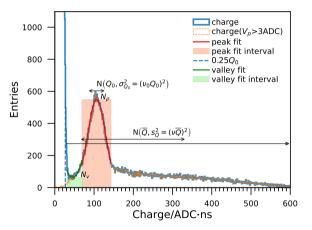

• \checkmark collection efficiency \rightarrow 100% and fast.

• \checkmark collection efficiency < 70%.

Benda Xu (THU-HEP

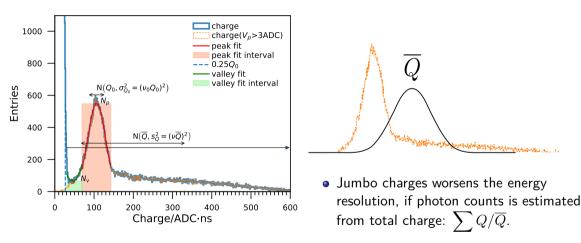
Characterization and Understanding of Novel 8-inch Micr

Testbench Setup: Illumination with Laser

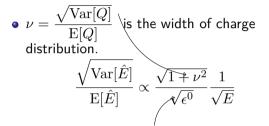


• Measure the photon detection efficiency relative to a reference dynode PMT.

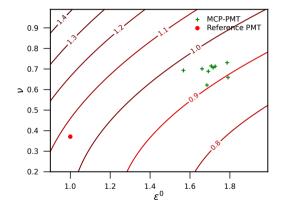
Zhang et al. Performance evaluation of the 8-inch MCP-PMT for Jinping Neutrino Experiment, 2023, NIM A


Benda Xu (THU-HEF

The Jumbo Charge from a Single Photo-Electron


• Charge of 1 photo-electron.

The Jumbo Charge from a Single Photo-Electron

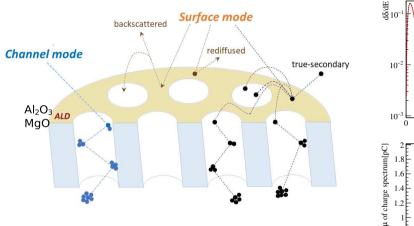


• Charge of 1 photo-electron.

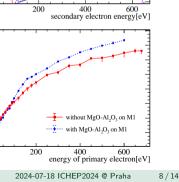
Energy Resolution Boost



- The improvement of photo detection efficiency dominates.
- Overall, the energy resolution is boosted.


Zhang et al. Performance evaluation of the 8-inch MCP-PMT for Jinping Neutrino Experiment, 2023, NIM A

Can We Do Better?


- What determines the shape of the charge spectrum?
- What is the physics behind?

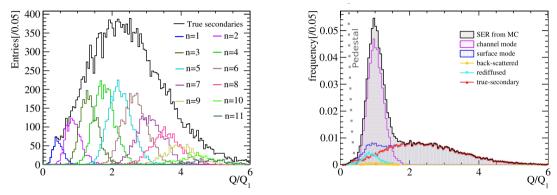
The Physics of a Photo-Electron

- Multiplication at the MCP end-face.
- True secondary electrons have low kinetic energy and thus gain.

Benda Xu (THU-HEP)

0.8

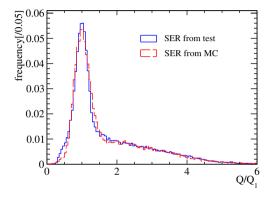
0.6


Ω

tota

back-scattered electrons

rediffused electrons true-secondary electrons

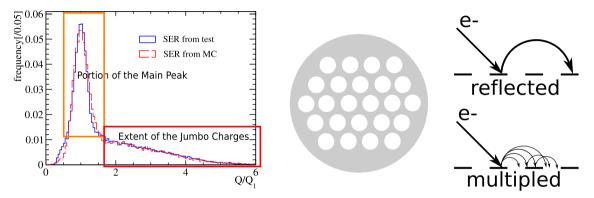

Shape Prediction of the Jumbo Charge

- Should have small-charged contributions at the same time.
 - It overlaps with pedestal, tricky to see.

Weng et al. Single electron charge spectra of 8-inch high-collection-efficiency MCP-PMTs, arXiv:2402.13266

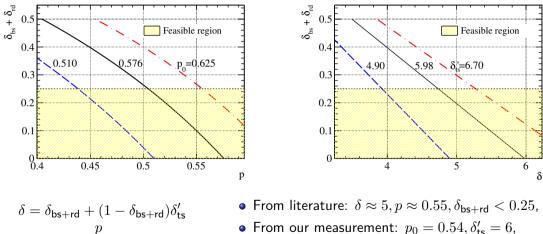
Fast Stochastic Matching Pursuit

- Single-electron templates to fit the charge.
- Separates small pulses from while noise.


• The small charge is visible!

Poster 210 Wang et al., The Fast Stochastic Matching Pursuit, arXiv:2403.03156

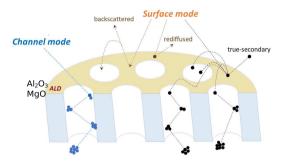
Benda Xu (THU-HEI

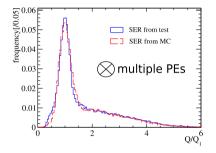

Characterization and Understanding of Novel 8-inch Micr

Are the Mode Parameters Experimentally Interpretable?

- Portion of the main peak p_0 is affected by open-area ratio.
- Extent of the jumbo charges is determined by the true secondary yield δ'_{ts} .
- They are both affected by the probability of multiplication (true secondary process).

The Fitted Parameters Are Realistic

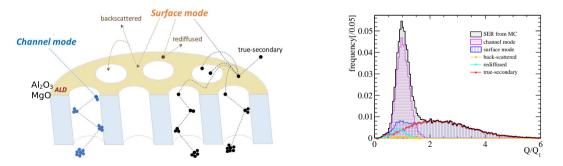



 $p_0 = \frac{p}{1 - (1 - p)\delta_{\mathsf{bs} + \mathsf{rd}}}$

Consistent.

Benda Xu (THU-HEP)

Characterization and Understanding of Novel 8-inch Mice




- Look for delays from the round trips.
- Should be more manifested with 20-inch MCP-PMTs.
- Batch calibration with moderate light intensities.
- Mixture and compound Poisson for PMT calibration.

Summary

- We observed jumbo charges in single electron response from the 8-inch high-collection-efficiency MCP-PMT.
- We constructed an experimentally verifiable model to explain it.
- Our study sets the stage for counting photons more precisely at neutrino detectors.

Experiment of Tune the Acceleration Voltage

Calibration with Light Intensity

SER charge probability density function as S(Q), total charge of k PE(s) is:

$$S_{k}(Q = \sum_{i=1}^{k} q_{i}) = \underbrace{\int_{-\infty}^{+\infty} \mathrm{d}q_{1} \cdot S(q_{1}) \cdots \int_{-\infty}^{+\infty} \mathrm{d}q_{k} \cdot S(q_{k})}_{k},$$

$$= \underbrace{S(q) \otimes \cdots \otimes S(q)}_{k} \text{ with probability } \pi(k; \mu).$$
(1)

Here μ is the mean of PEs. By applying Fourier transform (FT), total charge becomes:

$$\tilde{S}_{\text{total}}(p) = \sum_{k=0}^{\infty} \pi(k;\mu) \tilde{S}^{k}(p) = e^{\mu(\tilde{S}(p)-1)}.$$
(2)

 $S_{\text{total}}(Q)$ could be obtained losslessly by Discrete FT (DFT) and Inverse DFT (IDFT).

Benda Xu (THU-HEP

- p_0 includes electron reflections
- δ is the Manifestation of 3 Distinct Processes