

Q-Pix:

pixel-based charge readout for kton scale LArTPC

Shion Kubota for Q-Pix Consortium Harvard University / The University of Manchester

Contents

- 1. LArTPC
 - a) How it works
 - b) Examples
- 2. Q-Pix
 - a) Pixel-based readout technology
 - b) How it works with toy example
 - c) Q-Pix demonstration with commercial parts
- 3. Physics studies with Q-Pix
 - a) Beam studies
 - b) Supernova studies
 - c) Solar studies

VE RI TAS

Liquid Argon Time Projection Chamber (LArTPC)

Traditional wire-based LArTPC has been used in many different experiments

4

TAS

Liquid Argon Time Projection Chamber (LArTPC)

Liquid Argon Time Projection Chamber (LArTPC)

6

Wire vs Pixelated LArTPC

Shion Kubota | ICHEP 2024

Pixelated LArTPC – why not!

Challenge:

Great increase in

- 1) the number of channels
- 2) the amount of data

Solutions:

- 1) Electronic principle of least action
- 2) New way to quantize information

Plane

9

TAS

TAS

Shion Kubota | ICHEP 2024

MANCHESTER 1824 The University of Manchester

VECRI

TAS

MANCHESTER 1824 The University of Manchester

MANCHESTER 1824 The University of Manchester

MOSFET <mark>e e e</mark> <mark>e e e</mark> C_{f} Output Input-Threshold $V = \frac{Q}{C}$ Reset time time * the reset happens for 5 electrons Shion Kubota | ICHEP 2024 7/18/24 23

MOSFET <mark>e e e</mark> <mark>e e e</mark> C_f Input-Output Back to the rest state! **Threshold** Hence, reset signal. $V = \frac{Q}{C}$ Reset time time * the reset happens for 5 electrons Shion Kubota | ICHEP 2024 7/18/24 25

Toy Example

VECRI

TAS

MOSFET C_f Ŭ • (e⁻ Input-Output **Threshold** $V = \frac{Q}{C}$ Reset time time \ast the reset happens for 5 electrons Shion Kubota | ICHEP 2024 7/18/24 33

MOSFET C_f Ŭ Input-Output **Threshold** $V = \frac{Q}{C}$ Reset time time \ast the reset happens for 5 electrons Shion Kubota | ICHEP 2024 7/18/24 34

MOSFET C_f e e٩ Input-Output **Threshold** $V = \frac{Q}{C}$ Reset time time \ast the reset happens for 5 electrons Shion Kubota | ICHEP 2024 7/18/24 35

MOSFET C_f €e Input-Output **Threshold** $V = \frac{Q}{C}$ Reset time time * the reset happens for 5 electrons Shion Kubota | ICHEP 2024 7/18/24 36

7/18/24

Shion Kubota | ICHEP 2024

* the reset happens for 5 electrons

Instead of recording the entire waveform, we only need to record time stamps! Output

how long it took (Δt) to accumulate fixed amount of Q

We are measuring

MANCHESTE The University of Mancheste

Solution : Pixelization

MANCHESTER

More current

MANCHESTER 1824 The University of Manchester

VECRI

Sparse area took pixel more time to get unit amount of charge

Less current

With this method, the data rate is 10^6 times less than the traditional wire readout!

\bigcup

Q-Pix can offer a direct solution to the data-rate problem that pixelized kton-scale LArTPC has

MANCHESTER

TAS

Demonstrating Q-Pix with commercial components

140

Demonstrating Q-Pix with commercial components

TAS

Demonstrating Q-Pix with commercial components

MANCHESTER

TAS

Demonstrating Q-Pix with commercial components

Future of Q-Pix

TAS

MANCHESTER 1824

<u>'maximize the discovery potential of a kiloton scale LArTPC'</u>

MANCHESTER 1824 The University of Manchester

VECRI

'maximize the discovery potential of a kiloton scale LArTPC'

'maximize the discovery potential of a kiloton scale LArTPC'

 \sim 20GeV range : high energy neutrinos

 \sim 40MeV range : low energy neutrinos

 ${\sim}20 \text{MeV}$ range : very low energy neutrinos

	Accuracy [%]	
Category	3D	2D
Neutrino Interaction	94	91
Proton Multiplicity	91	87
Charge Pion Presence	94	91
Neutral Pion Presence	95	94

Signal: $\nu NC \pi^{C}$

Good tracking

Beam physics (~20GeV)

Enhancing neutrino event reconstruction with pixel-based 3D readout for liquid argon time projection chambers

C. Adams, ^{a,1} M. Del Tutto, ^{b,c} J. Asaadi, ^d M. Bernstein, ^c E. Church, ^e R. Guenette, ^c J.M. Rojas, ^{c,2} H. Sullivan ^d and A. Tripathi^d

^aArgonne National Laboratory, Lemont, IL, U.S.A.
 ^bFermi National Accelerator Laboratory, Batavia, IL, U.S.A.
 ^cHarvard University, Cambridge, MA, U.S.A.
 ^dUniversity of Texas-Arlington, Arlington, TX, U.S.A.
 ^ePacific Northwest National Laboratory, Richland, WA, U.S.A.

Enhanced event reconstruction accuracy

outral Pion Presence 95

Signal: v NC n⁰

Good tracking

TAS

Supernova physics (~40MeV)

S. Kubota,¹ J. Ho,^{1,*} A.D. McDonald,^{2,1,†} N. Tata,¹ J. Asaadi,² R. Guenette,^{3,1} J.B.R. Battat,⁴
D. Braga,⁵ M. Demarteau,⁶ Z. Djurcic,⁷ M. Febbraro,⁶ E. Gramellini,⁵ S. Kohani,⁸ C. Mauger,⁹ Y. Mei,¹⁰ F.M. Newcomer,⁹ K. Nishimura,⁸ D. Nygren,² R. Van Berg,⁹ G.S. Varner,⁸ and K. Woodworth⁵

Supernova physics (~40MeV)

Low energy threshold Better energy resolution

Good tracking

Enhanced low-energy supernova burst detection in large liquid argon time projection chambers enabled by Q-Pix (The Q-Pix Collaboration)

S. Kubota,¹ J. Ho,^{1,*} A.D. McDonald,^{2,1,†} N. Tata,¹ J. Asaadi,² R. Guenette,^{3,1} J.B.R. Battat,⁴
D. Braga,⁵ M. Demarteau,⁶ Z. Djurcic,⁷ M. Febbraro,⁶ E. Gramellini,⁵ S. Kohani,⁸ C. Mauger,⁹ Y. Mei,¹⁰
F.M. Newcomer,⁹ K. Nishimura,⁸ D. Nygren,² R. Van Berg,⁹ G.S. Varner,⁸ and K. Woodworth⁵

7/18/24

Paper published from

JINST in 2020

Paper published from

PRD in 2022

Paper In preparation

Enhancing

beam event studies

Enhancing

supernovae studies

Enabling

solar studies

Solar physics (~20MeV)

Good tracking Low energy threshold Better energy resolution

TAS

Solar neutrinos offer many opportunities

- Enhancement in oscillation parameters measurement
- Understanding solar models
- Potential discovery of hep neutrinos
- \rightarrow Requires :

better tracking lower energy threshold better energy resolution

Paper published from

JINST in 2020

Paper published from

PRD in 2022

Paper

In preparation

Enhancing

beam event studies

Enhancing

supernovae studies

Enabling

solar studies

Solar physics (~20MeV)

Good tracking Low energy threshold Better energy resolution

TAS

Solar neutrinos offer many opportunities

- Enhancement in oscillation parameters measurement
- Understanding solar models
- Potential discovery of hep neutrinos
- \rightarrow Requires :
 - better tracking lower energy threshold better energy resolution

Exactly the improvements Q-Pix can offer!

Paper published from

JINST in 2020

Paper published from

PRD in 2022

Paper In preparation

Enhancing

beam event studies

Enhancing

supernovae studies

Enabling

solar studies

Solar physics (~20MeV)

Good tracking Low energy threshold Better energy resolution

TAS

Solar neutrinos offer many opportunities

• Enhancement in oscillation parameters measurement

→ **<u>Background control becomes crucial</u>** for continuous readouts

- Understanding solar models
- Potential discovery of hep neutrinos
- \rightarrow Requires :
 - better tracking lower energy threshold better energy resolution

Paper on this is in preparation. Stay tuned! \bigcirc

Exactly the improvements Q-Pix can offer!

7/18/24

Paper published from

JINST in 2020

Paper published from

PRD in 2022

Paper In preparation

Enhancing

beam event studies

Enhancing

supernovae studies

Enabling

solar studies

60

Good tracking

which is suited for large scale detector

• Q-Pix offers Low energy threshold enabling low E neutrino studies. Better energy resolution

• Wire based LArTPC has been proven to be successful in many neutrino experiments but can be improved with pixel technology.

• Q-Pix is a new technology whose default state is 'do-nothing' –

MANCHESTER 1824 The University of Manchester

TAS

Q-Pix consortium would like the thank the DOE and the Gordon & Betty Moore Foundation for their support

Shion Kubota | ICHEP 2024

61

7/18/24

Shion Kubota | ICHEP 2024

62

Enhanced low-energy supernova burst detection in large liquid argon time projection chambers enabled by Q-Pix

Enhancing Neutrino Event Reconstruction with Pixel-Based 3D Readout for Liquid Argon Time Projection Chambers \Rightarrow Beam physics with Q-Pix (High energy)

 \Rightarrow Supernovae neutrino physics with Q-Pix (Low energy)

Links to papers

Demonstrating the Q-Pix front-end using discrete OpAmp and CMOS

Q-Pix: Pixel-scale Signal Capture for Kiloton Liquid Argon TPC Detectors:

⇒ Q-Pix commercial components result

MANCHESTE

Wire Ambiguity

Sigma Delta Modulator

Integrator

Sums the input signal over time, effectively smoothing it and making the system more tolerant to noise.

Quantizer

Converts the analog signal from the integrator into a digital signal. It is a single-bit quantizer with output of either 0 or 1.

DAC

Receives the output from the quantizer and converts the digital output back into an analog signal. It limits the amount of charge on Cf.

Paper published on this

Supernova Pointing

- The intrinsic 3D nature of the pixel data collected by Q-Pix allows us to get directional information from the identified supernova events.
- ~10% of all the events collected are neutrino-electron elastic scattering events (v_{χ} ES) and the rest are neutrino-charged current (v_e -CC).
- v_{χ} -ES events preserve information about the direction of the neutrino
 - \circ $\;$ The direction of the neutrino tells us where in the sky the supernova burst occurs
 - This is a critical aspect of the identification of a SNB event for astronomers and particle physicists!

Supernova Pointing

- By reconstructing a direction vector for each neutrino interaction, we can come up with a hypothesis of where the SBN event occurred in the sky
 - \odot We correctly identify the SBN direction within 20 degrees 80% of the time
 - \odot The other 20% we have the direction wrong by 180 degrees
- Repeating this over 10,000 unique SBN events, we computed how confident we are with the direction with a 10 kTon Q-Pix module
 - \odot 10 kpc supernova would be reconstructed within θ = 33 ° and φ = 45 ° at 1 σ , and θ = 99 ° and φ = 135 ° at 3 σ .

MANCHESTE

MANCHESTER

Electron scatters more often as it loses energy.

More scattered = less energy = end of the track Less scattered = more energy = beginning of the track

Pick data points at both ends

MANCHESTER 1824 The University of Manchester

VE

Draw line from two ends to every single data point

MANCHESTER 1824 The University of Manchester

VE

Pick data points at both ends

Draw line from two ends to every single data point

Calculate the cosine of angle between the lines and computed axis, and sum them

MANCHESTER 1824 The University of Manchester

VE
Directionality Flipping

Pick data points at both ends

Draw line from two ends to every single data point

Calculate the cosine of angle between the lines and computed axis, and sum them

 θ values are smaller $\rightarrow \cos(\theta)$ values are bigger sum_cos_case1 = $\cos(\theta_{11}) + \cos(\theta_{12}) + \cos(\theta_{13}) \cdot \cdot \cdot$

 θ values are bigger $\rightarrow \cos(\theta)$ values are smaller sum_cos_case2 = $\cos(\theta_{21}) + \cos(\theta_{22}) + \cos(\theta_{23}) \cdot \cdot \cdot$

sum_cos_case1 > sum_cos_case2

MANCHESTE

9 And all of it's neighboring pixels (where we define neighbor as nearest 2pixel)

7/18/24

We now define an interval in time around which we will "cluster" together RTD's and begin from the first RTD

8/24

The process now repeats growing outward in time till there are no more RTD's to cluster

18/24

The process now repeats growing outward in time till there are no more RTD's to cluster

18/24

The process now repeats growing outward in time till there are no more RTD's to cluster

18/24

We now have a cluster with a given number of RTD's

The process repeats until all the RTD's are in a cluster 8 9 6 2 1 7/18/24

Solar neutrino chains

The University of Manchester

MANCHESTER

