Overview and Status of the 2x2 NDLAr Demonstrator: A Pixel-Based LArTPC Prototype for the DUNE Near Detector

Karolina Wresilo on behalf of the DUNE collaboration ICHEP 18th July 2024

DUNE (Deep Underground Neutrino Experiment)

DUNE Physics

- Rich physics program including:
 - Precision measurements of neutrino oscillations
 - $5\sigma \ \delta_{CP}$ discovery potential over a wide range of allowed values and determination of mass hierarchy in a single measurement
 - And many, many more (supernova neutrinos, proton decay, solar neutrinos, BSM searches ...)

Day 1 Near Detector Complex

A suite of complimentary detectors to monitor and characterise the beam

Mitigation of Systematic Uncertainties with NDLAr

Key features:

- Same nuclear target as the Far Detector (FD)
 - $\rightarrow\,$ Constrain cross-section systematics
- Similar technology as the FD
 - \rightarrow Constrain detector systematics
- High performance LArTPC
 - → Cope with the high-rate environment due to the intense beam

Simulated 1.2 MW Beam Spill at NDLAr

- Order of 50 interactions per spill!
- Must correctly match each charge deposit to individual neutrino interaction

Reconstruction Challenges

• Overlapping charge deposits (pile-up)

 Charge read-out is slow (~100s of μs between interaction and detection vs 10 μs beam spill)

Reconstruction Challenges

- Overlapping charge deposits (pile-up)
 - \rightarrow Need a native 3D charge-read out to disentangle the pile-up
- Charge read-out is slow (~100s of μs between interaction and detection vs 10 μs beam spill)

Reconstruction Challenges

- Overlapping charge deposits (pile-up)
 - \rightarrow Need a native 3D charge-read out to disentangle the pile-up
- Charge read-out is slow (~100s of μs between interaction and detection vs 10 μs beam spill)
 - → Need a high-performance light read-out to match fast light signals to charge deposits

The First Modularised LArTPC

• 35 individual 1x1x3 m³ modules (= 70 optically isolated TPCs!)

The First Modularised LArTPC

Charge deposits in whole detector

The First Modularised LArTPC

• Segmentation lowers the signal occupancy per TPC

LArPix Charge Read-Out

- 64K channels/ m^2 (NDLAr will have ~200 m^2 of LArPix)
- ~3-4 mm granularity
- Low power dissipation (<100 µW/channel) - cryogenics compatible
- Continuous read-out and low data rates enabled through self-triggering digitisation and read-out
- Dynamic chip network configuration robust to single-point failure

LArPix: <u>JINST 13 P10007</u>

LArPix anode tile (prototype dimensions)

Charge read-out (inside)

Charge read-out (outside)

ArCLight and LCM Light Read-out

- SiPM-based, dielectric light collection modules
- Complimentary technologies:

	ArCLight	LCM	
PDE	~0.2%	~0.6%	
Spatial resolution	~5cm	~10cm	
Additional notes	High dynamic range	O(ns) time resolution	

The 2x2 NDLAr Demonstrator

The 2x2 Demonstrator + MINERvA

The 2x2 Demonstrator + MINERvA

- Receives GeV neutrinos from the NuMI beam
- Demonstration of
 - robustness and long-term stability of modularised approach and novel detector subsystems
 - multi-module AND multi-detector
 reconstruction capabilities

Upstream MINERvA Planes

Why NuMI Beam?

High-flux, ND-LAr-like environment!

The First DUNE Neutrino Data

Event 20, ID 20 - 2024-07-08 00:20:14 UTC

- Operations commenced on 8th of July
- Collecting data in $\overline{\nu}$ mode (300K events/year)
- ~ 5 days of physics quality data
- Preparing for another beam run in 2024/25

Physics Program Opportunity

- The 2x2 will sample a phase space previously unexplored on argon
- Short term goals
 - track multiplicity measurement (sensitive to final state modelling)
 - mesonless $\overline{\nu}_{\mu}$ cross-section measurement (scarce data)

Physics Program Opportunity

 Future work includes pion production measurements (dominant topology at DUNE), neutron tagging (important for energy reconstruction) and possibility of off-beam studies (enabled through self-triggering charge read-out)

- NDLAr will play a key role in mitigating systematic uncertainties for DUNE long-baseline oscillation measurements.
- Mitigation of event pile-up due to the intense beam enabled by
 - Modularised detector design
 - Novel charge read-out (first native 3D event readout in LArTPC)
 - High performance light read-out
- The 2x2 + MINERvA is currently taking NuMI \overline{v} data enabling
 - Performance demonstrations
 - Development of neutrino analysis pipelines
 - Physics measurements on argon in an unexplored region of phase space

Single Module Commissioning

2-year effort (2021-2023)

- Modules assembled and commissioned individually
- Collected O(100)s millions of cosmic ray data
- First performance demonstration of the cutting-edge 3D charge read-out and light detection technologies
 - Full details in: Module-0 perfomance paper: <u>arXiv:2403.032012</u>

Module-0 cosmic ray event

Single Module Commissioning

2-year effort (2021-2023)

- Modules assembled and commissioned individually
- Collected O(100)s millions of cosmic ray data
- First performance demonstration of the cutting-edge 3D charge read-out and light detection technologies
 - Full details in: Module-0 perfomance paper: arXiv:2403.032012

Module-0 pixel response -1.0 -0.5 0.0

x distance to pixel center [mm]

0.5

> -1.5

> -2.0-1.5

1.0 1.5 2.0

0.8725

0.8700

Single Module Assembly

1. Field shell + cathode

2. Assemble charge and light readout components

Single Module Commissioning Summary

Bern Single module test	Module-0	Module-1	Module-2	Module-3
LArPix ver.	v2A	v2A	v2B	v2A
Pixel pitch,mm	4.434	4.434	3.8	4.434
CRS Threshold	5.8 ke, ~ ¼ MIP	4.5 ke, ~ 1/5 MIP	7.5 ke, ~ 2/5 MIP	6.1 ke ~ ¼ MIP
Inactive channels	7.8%	2.4%	9%	3.9 %
LRS PDE: LCM	0.6 %	0.6 %	0.6 %	tbd
LRS PDE: ACL	0.06%	0.2 %	0.2 %	tbd
LRS threshold	~ 5 MeV	~ 1.6 MeV	< 1.6 MeV	~ 1.6 MeV
LRS timing	< 2 ns	1.2 ns	1.2 ns	1.2 ns
LRS inactive channels	8.3%	1%	0	2%
Field shell	DR8	DR8	DR8	DR8
R shell	71.193 ΜΩ	82.582 MΩ	71.285 MΩ	61.791 MΩ
Max E-Field tested	1 kV/cm	0.5 kV/cm	0.8 kV/cm	0.7 kV/cm
Electron lifetime	> 2 ms	> 2 ms	> 2 ms	> 2 ms

Light Collection Principle

LArPix Performance

LArPix: arXiv:1808.02969

Dynamic HYDRA Network Configuration

MINERvA Installation

Scintillator Planes + ECAL + HCAL

(muon identification and reconstruction)

Scintillator Planes

(rock muon tagging)

The 2x2 @Fermilab

The 2x2 @Fermilab

2x2 Commissioning

Charge read-out:

- 330,000 pixels
- ~200 keV pixel energy thresholds
- 97% active pixels

Light read-out:

- 383 SiPMs
- All active
- Nominal voltage of 500 V/cm
- 30 days of data = 1.5e20 POT = 10k events

LCM size comparison (2x2 vs NDLAr)

Full-Scale Demonstrator (FSD)

- Assembly and commissioning later this year
- Goals:
 - Exercise component and fullscale module production
 - Establish testing program
 - Confirm technical goals achieved with mod0-3 continue to be met

NDLAr LArPiX anode tile

DUNE PRISM

- Oscillated FD flux through a linear combination of ND flux at various off-axis positions
- Cross-section and flux modelling becomes largely decoupled

Probing θ_{23} **Octant**

Neutrino disappearance measurement:

 $P\left(\mathbf{\hat{\nu}}_{\mu}^{(-)} \rightarrow \mathbf{\hat{\nu}}_{\mu}^{(-)}\right) \approx 1 - \sin^{2} 2\theta_{23} \sin^{2}\left(\Delta m_{32}^{2} \frac{L}{4E}\right)$

T2K FD Reconstructed energy spectra

arXiv:2006.16043

Probing δ_{CP} and Mass Hierarchy

Neutrino appearance measurement

• Interplay of θ_{13} , θ_{23} , δ_{CP} and MH through matter effect on $P(\nu_{\mu} \rightarrow \nu_{e})$

arXiv:2006.16043

NDLAr Dimensions

• High event-rate: detector size driven by energy resolution and coverage requirements

NuMI vs DUNE Beam

DUNE ND CDR: arXiv:2103.13910

NuMI vs DUNE Beam

