

Revisiting experimental mass limits on HECOs using Dyson-Schwinger resumation

Emanuela Musumeci (IFIC, Valencia) in collaboration with J.Alexandre , N.E. Mavromatos, V. A. Mitsou

International Conference on High Energy Physics 18-24 July 2024 Prague Czech Republic Based on Phys. Rev. D 109, 036026

PoS LHCP2023 (2024) 261

19 July 2024

Ľ

Predicted by various theories Beyond the Standard Model

♦ Q= ne, n ∈ Z
♦ High Ionisation
♦ Mass and Spin *free parameters*

Emanuela Musumeci |

SPIN 1/2 Production mechanisms at colliders

SPIN 1/2 Production mechanisms at colliders

Emanuela Musumeci | ICHEP 2024

SPIN 1/2 Production mechanisms at colliders

Electromagnetic Interactions - QED-like Lagrangian

* This is due to the fact that the basic effect of the resummation is equivalent to a gauge-fixed free QED Lagrangian in which the standard Ward identity is not valid, leading to the above result, assuming naturally that the coupling renormalisation function is of the same order as the resummation. (see preprint version of Alexandre et al., e-Print:2310.17452 [hep-ph] (*Phys.Rev.D 109 (2024) 3, 3*)

Electromagnetic Interactions - QED-like Lagrangian

 γ The aim is to solve Dyson-Schwinger equations for HECO and γ self-energies without assuming $g^2 \ll 1$

$$Z = 1 + \frac{g^2}{8\pi^2\lambda} \ln\left(\frac{Zk}{M}\right)$$

$$Z\omega = \frac{g^2}{6\pi^2} \ln\left(\frac{Zk}{M}\right)$$

$$Z\left(1 - \frac{m}{M}\right) = \frac{g^2}{8\pi^2\lambda} \frac{1 + 3\lambda + \omega}{1 + \omega} \ln\left(\frac{Zk}{M}\right)$$

$$UV \text{ Fixed-point solution}$$

$$\lim_{k \to \infty} (Z, \omega, \tilde{M}) = (Z^*, \omega^*, \tilde{M}^*) \quad \text{such that} \quad \lim_{k \to \infty} \frac{kZ}{M} = \text{ finite}$$

$$J. \text{ Alexandre, N. E. Mavromatos}$$

$$\frac{Phys. Rev. D 100 (2019) 9}{100 (2019) 9}$$

Running coupling:
$$\alpha(k) = \frac{g^2/(4\pi)}{1+\omega(k)}$$
 with $g = n e$, $\omega(k) > 0$

Effective HECO Mass:
$$\mathcal{M}(k) = \frac{M(k)}{Z(k)} = k \exp\left(-\frac{2\pi}{\alpha(k)}(Z(k)-1)\right)$$

@ UV fixed point ($Z^{\star}, \omega^{\star}, M^{\star}$ **)**

$$\lim_{k \to \Lambda} M(k) \equiv M(\Lambda) = \Lambda \exp\left(-\frac{2\pi}{\alpha^*}(Z^* - 1)\right), \ \Lambda \gg m$$

Emanuela Musumeci | ICHEP 2024

Feynman Rules

Running mass: $\mathcal{M}(\Lambda) = \Lambda \exp\left(-\frac{2\pi}{\alpha^{\star}}(Z^{\star}-1)\right)$ HECO-fermion propagator: $G^{\text{eff}} = i\frac{p + \mathcal{M}(\Lambda)}{p^2 - \mathcal{M}(\Lambda)^2}$ Photon propagator: $\Delta_{\mu\nu}^{\text{eff}} = \frac{-i}{q^2}\left(\eta_{\mu\nu} + \frac{1}{2}\omega^{\star}\frac{q_{\mu}q_{\nu}}{q^2}\right)$ Photon-HECO vertex: $\Gamma_{\mu}^{\text{eff}} = g Z^{\star}\gamma_{\mu}$ with $\hat{\alpha}^{\star}$ is the rescaled electric coupling $\hat{\alpha}^{\star} = \frac{g^2/4\pi}{1+\hat{\omega}^{\star}}, Z^{\star} = 1.477$ the wavefunction renormalization and $\omega^{\star} = \frac{4}{3}\left(1 - \frac{1}{Z^{\star}}\right) \simeq 0.431$

ICHEP 2024

Z^0 inclusion

SU(2) singlet

Same procedure as for photon with the replacement:

$$g^2 \to \hat{g}^2 \equiv g^2 + 3g'^2/4 \text{ where } g' \text{ is the } Z_0\text{-HECO coupling}$$
$$\mathcal{M}(\Lambda) = \Lambda \exp\left(-\frac{2\pi}{\hat{\alpha}^*}(\hat{Z}^* - 1)\right)$$
$$\hat{Z}^* = \hat{Z}_+ = \frac{2}{9}(3+\eta)\left(1 + \sqrt{1 - \frac{9\eta}{(3+\eta)^2}}\right)$$
$$\hat{\omega}^* = \frac{4}{3}\eta\left(1 - \frac{1}{\hat{Z}^*}\right) \text{ with } \eta \equiv g^2/\hat{g}^2 < 1.$$

UNIVERSAL FEYNRULES OUTPUT

<u>SPIN 1/2</u>

- Two UFO models created:
- i) γ -HECO only interaction
- ii) Including Z^0 boson

Tested on Madgraph!

Available on the FeynRules model database > Simple extensions of the SM

	General 2HDM	The most general 2HDM, including all flavor violation and mixing terms.	C. Duhr, M. Herquet	Availa
	Heavy Scalar Effective Model	A model with one heavy scalar with effective couplings to the vector bosons.	Y. Wu, Y. Xu, X. Chen	Availa
	Heavy Neutrino	The SM with three heavy Majorana neutrinos that couple to SM fields through mixing with active neutrinos.	R. Ruiz	Availa
	Heavy Neutral Leptons	The SM with heavy neutrinos interacting with mesons.	P. Coloma, E. Fernández-Martínez, M. González-López, J. Hernández- García	Availa
	Hidden Abelian Higgs Model	A 2' model where the 2' interacts with the SM through mixings, leading to very small non-SM like 2' couplings.	D. Curtin	Availa
<	HECO	High Electric Charge Objects (HECOs) pair production by including resummation effects	E. Musumeci	Availa
	Hill Model	A model with an unusual extension of the SM Higgs sector.	D. de Aquino, C. Duni	Availa
	Inert Doublet Model	A model with an additional complex scalar SU(2)L doublet and an unbroken Z2 symmetry under which all SM particles are even while the extra doublet is odd.	A. Goudelis, B. Herrmann, O. Stal	Availa
	Flavor-violating KK gluon	A Kaluza-Klein Gluon Model with FCNC Decay to a Single Top Quark	E. Drueke, R. Schwienhorst, N. Vignaroli, J. Nutter, D. Walker, JH. Yu, R. S. Chivukula, E. Simmons	Availa
	Simplified Freeze-in models	LHC-friendly minimal freeze-in models with a charged parent	A. Goudelis	Availa
	Leptoquarks + dark matter	Minimal model including dark matter and leptoquarks	B. Fuks	Availa
	Minimal Zp models	The minimal Z' extension of the SM.	L. Basso	Availa
	Minimal Dilaton Model	Minimal Dilaton Model	J. Cao. X. Hao. Z. Heno. L. Shano. Y. Zhano	Availa

Two new input parameters:

i) Multiplicity of the electric charge **n** (Q= **n** e)

ii) Cut-off Λ

Emanuela Musumeci |

UNIVERSAL FEYNRULES OUTPUT

<u>SPIN 1/2</u>

Two new input parameters:

i) Multiplicity of the electric charge **n** (Q= **n** e)

ii) Cut-off Λ

mmands for N	1adGraph5_aMC@NLO
1. γ-only exch	ange
• Drell-Yan	
import mode	l heco_spinhalf_photononly
generate p output DY_H	p > heco heco~ ECO
Photon-Fusi	ion
import mode	l heco_spinhalf_photononly
generate a	a > heco heco~
output PF_H	
2. y/Z0 excha	nge
• Dreii-faii	
import mode	l heco_spinhalf_withZ0
generate p	$\rho > heco heco \sim$
output DY_H	ECO ZØ
run card and	parameters
run card and	parameters
run card and launch name	parameters _of_theoutput ### replace name_of_theoutput accordingly, i.e. DY_HEC0_Z0
run card and launch name set ebeam1	parameters _of_theoutput ### replace name_of_theoutput accordingly, i.e. DY_HECO_Z0 5500 ### beam 1 energy in GeV
run card and launch name set ebeam1 set ebeam2	parameters _of_theoutput ### replace name_of_theoutput accordingly, i.e. DY_HECO_Z0 5500 ### beam 1 energy in GeV 5500 ### beam 2 energy in GeV
run card and launch name set ebeam1 (set ebeam2 (set lpp1 1 set lpp2 1	parameters _of_theoutput ### replace name_of_theoutput accordingly, i.e. DY_HECO_Z0 5500 ### beam 1 energy in GeV 5500 ### beam 2 energy in GeV ### beam 1 type (1=proton)
run card and launch name set ebeam1 (set ebeam2 (set lpp1 1 set lpp2 1 set pdlabel	parameters _of_theoutput ### replace name_of_theoutput accordingly, i.e. DY_HECO_Z0 5500 ### beam 1 energy in GeV 5500 ### beam 2 energy in GeV ### beam 1 type (1=proton) ### beam 2 type (1=proton) lhapdf ### set the pdlabel argument
run card and launch name set ebeam1 (set ebeam2 (set lpp1 1 set lpp2 1 set pdlabel set lhaid 82	parameters _of_theoutput ### replace name_of_theoutput accordingly, i.e. DY_HECO_Z0 5500 ### beam 1 energy in GeV 5500 ### beam 2 energy in GeV ### beam 1 type (1=proton) ### beam 2 type (1=proton) lhapdf ### set the pdlabel argument 2000 ### set the pdf set
launch name set ebeam1 (set ebeam2 (set lpp1 1 set lpp2 1 set pdlabel set lhaid 8 set nevents	parameters _of_theoutput ### replace name_of_theoutput accordingly, i.e. DY_HECO_Z0 5500 ### beam 1 energy in GeV 5500 ### beam 2 energy in GeV ### beam 1 type (1=proton) ### beam 2 type (1=proton) lhapdf ### set the pdlabel argument 2000 ### set the pdf set 10000 ### number of events
launch name set ebeam1 (set ebeam2 (set lpp1 1 set lpp2 1 set pdlabel set lhaid 82 set nevents set n 20 ###	parameters _of_theoutput ### replace name_of_theoutput accordingly, i.e. DY_HECO_Z0 5500 ### beam 1 energy in GeV 5500 ### beam 2 energy in GeV ### beam 1 type (1=proton) ### beam 2 type (1=proton) lhapdf ### set the pdlabel argument 2000 ### set the pdf set 10000 ### number of events # set the multiplicity of the charge

VALIDATION OF UFO MODELS

<u>SPIN 1/2</u>

Calculation of the analytical cross section (Wolfram Mathematica)

Comparison results from Madgraph with those obtained from Mathematica

	D	Y with resummati	ion $u\bar{u} \to \mathcal{H}\overline{\mathcal{H}}$ @	$\sqrt{s} = 13 \text{ TeV}, \Lambda$	$= 2 { m TeV}$	NO PDF	
O(a)	γ -only exchange			γ/Z^0 exchange			
G (C)	$\sigma_{ m MADGRAPH}$ (pb)	$\sigma_{ m MATHEMATICA}~(m pb)$	UFO/Theory	$\sigma_{ m MADGRAPH}~(m pb)$	$\sigma_{ ext{Mathematica}}$ (p	b) UFO/Theory	
20	0.0762	0.0758	1.005	0.0659	0.0655	1.006	
40	0.3048	0.3027	1.007	0.2632	0.2616	1.006	
60	0.6837	0.6807	1.004	0.5919	0.5886	1.005	
80	1.2151	1.2097	1.004	1.0508	1.0462	1.004	
100	1.8976	1.8898	1.004	1.6460	1.6345	1.007	
120	2.7372	2.7210	1.006	2.3682	2.3537	1.006	
140	3.7261	3.7032	1.006	3.2251	3.2035	1.006	
160	4.8712	4.8366	1.007	4.2083	4.1843	1.005	
180	6.1548	6.1210	1.006	5.3224	5.2955	1.005	
200	7.5927	7.5568	1.004	6.5758	6.5379	1.006	

DRELL-YAN

PHOTON FUSION

PF	with resummation $\gamma\gamma$	$\rightarrow \mathcal{H}\overline{\mathcal{H}} @ \sqrt{s} = 13 \text{ TeV},$	$\Lambda = 2 \text{ TeV no PDF}$
Q(e)	$\sigma_{ m MadGraph}$ (pb)	$\sigma_{ m Mathematica}~(m pb)$	UFO/Theory
20	7.438×10^{3}	7.398×10^{3}	1.005
40	$7.732{ imes}10^4$	$7.692{ imes}10^4$	1.004
60	$3.539{ imes}10^5$	$3.528{ imes}10^5$	1.003
80	1.082×10^{6}	1.076×10^{6}	1.006
100	$2.596 { imes} 10^{6}$	$2.580{ imes}10^9$	1.006
120	$5.327{ imes}10^6$	$5.300{ imes}10^6$	1.005
140	$9.814{ imes}10^6$	$9.761 { imes} 10^{6}$	1.005
160	1.668×10^{7}	1.659×10^{7}	1.005
180	$2.663{ imes}10^7$	$2.651{ imes}10^7$	1.004
200	4.052×10^{7}	$4.033 { imes} 10^7$	1.005

ICHEP 2024 🛞

IMPACT ON PRODUCTION CROSS SECTIONS

	$DV m \rightarrow \alpha \rightarrow \mathcal{U}\overline{\mathcal{U}}$	$\overline{I} \otimes \sqrt{a} = 13 \text{ TeV} \wedge 12 \text{ TeV}$	
	$D I \ pp \to \gamma \to \pi\pi$	$\lambda \otimes \sqrt{s} = 13$ lev, $\Lambda = 2$	Iev NNPDF23
Q(e)	$\sigma_{ m tree-level}~({ m fb})$	$\sigma_{ m resum}~({ m fb})$	$M ({ m TeV})$
20	7.75×10^{2}	1.692×10^{3}	0.507
60	4.959	10.79	1.717
100	5.949	12.95	1.893
140	9.134	19.86	1.945
180	13.67	29.71	1.966
220	19.31	42.08	1.977

DRELL-YAN

	DY $pp \to \gamma/Z^0 \to \mathcal{H}_{2}^{2}$	$\overline{\mathcal{H}} @ \sqrt{s} = 13 \text{ TeV}, \Lambda =$	2 TeV
Q(e)	$\sigma_{ m tree-level}~({ m fb})$	$\sigma_{ m resum}$ (fb)	$M ~({\rm TeV})$
20	1.014×10^{2}	2.118×10^{2}	0.798
60	3.367	6.527	1.780
100	4.722	9.835	1.924
140	7.752	16.25	1.961
180	11.95	24.92	1.976
220	17.22	35.94	1.984

PHOTON FUSION

	$PF \ pp \to \mathcal{H}\overline{\mathcal{H}} @$	$\sqrt{s} = 13$ TeV, $\Lambda = 2$ TeV	LUXqed17
Q(e)	$\sigma_{\text{tree-level}}$ (fb)	$\sigma_{\rm resum}$ (fb)	M (TeV)
20	1.321×10^4	6.271×10^4	0.507
60	8.466×10^{2}	4.025×10^{3}	1.717
100	$2.895 imes 10^3$	1.372×10^4	1.893
140	8.753×10^{3}	4.170×10^4	1.945
180	2.175×10^{4}	1.030×10^{5}	1.966
220	4.612×10^{4}	$2.184 imes 10^5$	1.977

<u>SPIN-1/2</u>

After resummation...

- the production via Dell-Yan cross section increases by a factor of $\,\sim 1.66$
- the production via Photon-Fusion cross section increases by a factor of ~ 2.76

ICHEP 2024

IMPACT ON PRODUCTION CROSS SECTIONS

NEW MASS LIMITS

$\operatorname{Experiment}/$	Q~(e)	DY γ exchange		DY $\gamma/2$	DY γ/Z^0 exchange		$\gamma\gamma$ fusion	
energy		LO	DS	LO	DS	LO	DS	
	15	0.18	0.24	0.17	0.24	_	_	
	20	0.28	0.36	0.31	0.36	_	_	
	25	0.44	0.55	0.44	0.53	_	_	
	50	0.78	0.88	0.78	0.87	_	_	
MAEDAI [14]	75	0.78	0.88	0.78	0.84	_	_	
MOEDAL [14] $\sqrt{a} = 8 \text{ ToV}$	100	0.73	0.84	0.71	0.80	_	_	
$\sqrt{s} = 0$ lev	125	0.66	0.75	0.64	0.72	_	_	
	130	0.64	0.74	0.62	0.70	_	_	
	140	0.58	0.68	0.62	0.69	_	_	
	145	0.52	0.66	0.51	0.60	_	_	
	150	0.50	0.63	0.58	0.66	_	_	
	10	0.78	0.78^{a}	_	_	_	_	
	20	1.05	1.14	_	_	_	_	
AILAS [11] $\sqrt{a} = 8 \text{ TeV}$	40	1.16	1.25	_	_	_	_	
$\sqrt{s} = 0$ lev	60	1.07	1.15	_	_	_	_	
	20	1.83	2.02	1.8	1.9	2.5	2.7	
ATTI A.C. [10, 19]	40	2.05	2.22	2.2	2.3	3.1	3.4	
AILAS [12, 13] $\sqrt{a} = 13$ ToV	60	2.00	2.18	2.2	2.4	3.1	3.4	
$\sqrt{s} = 10$ 10 V	80	1.86	2.02	2.1	2.2	3.0	$3.0^{ m b}$	
	100	1.65	1.80	1.9	2.1	2.5	2.5^{b}	

Experimental lower limits at 95% CL on spin-1/2 HECO mass (TeV)

The increase in the mass limits spans a wide range of values up to 30%!!

NOTE: The latest <u>MoEDAL results</u> @ 13 TeV are not included here!

ICHEP 2024

<u>SPIN-0</u>

Feynman Rules @ UV fixed-point
• Scalar- γ vertex: $-i\tilde{g}Z^{\star} \simeq -ig\sqrt{1+\frac{8g^2}{h}}$, $\left(\frac{g^2}{h} \lesssim 0.0825\right)$
Self-interaction vertex: $-i\frac{H^{\star}}{Z^{\star 4}} \simeq -i\frac{h}{4}\left(1+\frac{8g^2}{h}\right)^{-2}$
• Running mass: $\tilde{M} \simeq \Lambda \exp\left(-\frac{32\pi^2}{h}\right) \lesssim \Lambda \exp\left(-\frac{2.64\pi^2}{n^2 e^2}\right)$
• Gauge Boson propagator: $\frac{i}{p^2 - i\epsilon} \left(-\eta_{\mu\nu} + \frac{4g^2}{3h} \right), \ \epsilon \to 0^+$
• Charged scalar propagator: $\frac{i}{p^2 - \tilde{M}^2 + i\epsilon}, \ \epsilon \to 0^+$

Emanuela Musumeci |

ICHEP 2024

17

<u>SPIN-0</u>

- Simplementation of the UFO model
- Calculation of the analytical cross section (Wolfram Mathematica)
- Comparison Madgraph vs Mathematica
- Studying resummation effects on cross-sections

spin-0 HECO pair production via Drell-Yan spin-0 HECO pair production via Photon-Fusion 104 $\sqrt{s} = 13$ TeV Q=15e (resumm.) Q=15e (resumm.) $\sqrt{s} = 13$ TeV Q=15e (tree lev.) Q=15e (tree lev.) 10⁷ Q=50e (resumm.) Q=50e (resumm.) 10³ Q=50e (tree lev.) Q=50e (tree lev.) Q=100e (resumm.) Q=100e (resumm.) Q=100e (tree lev.) Q=100e (tree lev.) 10² 10⁵ Q=200e (resumm.) Q=200e (resumm.) -- Q=200e (tree lev.) Q=200e (tree lev.) σ (fb) σ (fb) 10^{-10} 10^{3} 10⁰ 10¹ 10^{-1} **Preliminary** Preliminary 10⁻² 10⁻¹ 1.0 2.0 2.5 2.5 3.0 4.0 1.5 3.0 1.0 1.5 2.0 3.5 M (TeV) M (TeV)

After resummation...

- the production via Dell-Yan cross section improves by a factor of ~ 2.1
- the production via Photon-Fusion cross section improves by a factor of ~ 4.75

CONCLUSIONS

- Dyson–Schwinger resummation performed
- UFO models available for experimental HECOs searches
- Reliable results compared to those obtained at tree-level
- Ongoing project:
 - resummation for spin-0 HECOs (Alexandre, Mavromatos, Mitsou, Musumeci)
- Future project:

resum. for Magnetic Monopoles (based on Alexandre & Mavromatos <u>Phys.Rev.D 100(2019),9</u>)

Dyson-Schwinger Resummation

$$Z = 1 + \frac{g^2}{8\pi^2\lambda} \frac{1}{\epsilon} \left(\frac{Zk}{M}\right)^{\epsilon} + \text{finite}$$

$$\omega = \frac{g^2}{6\pi^2Z} \frac{1}{\epsilon} \left(\frac{Zk}{M}\right)^{\epsilon} + \text{finite}$$

$$1 - \frac{m}{M} = \frac{g^2}{8\pi^2\lambda Z} \frac{1+3\lambda+\omega}{1+\omega} \frac{1}{\epsilon} \left(\frac{Zk}{M}\right)^{\epsilon} + \text{finite}$$

$$g \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ are independent of } m \text{ and } m \text{ and } m \text{ and } m \text{ and } m \text{ are independent of } m \text{ and } m \text{$$

endent of k

The aim is to solve the full set of equations without assuming $g^2 \ll 1$

Z^0 boson inclusion

SPIN-1/2

In the Feynman gauge, in the high energy limit, the Z^0 boson behaves as a second photon

$$\Delta_{\mu\nu}^{Z^{0}} = -\frac{i}{p^{2} - M_{Z}^{2} + i\epsilon} \left(\eta_{\mu\nu} + \frac{\omega_{Z^{0}}}{1 + \omega_{Z^{0}}} \frac{p_{\mu}p_{\nu}}{M_{Z}^{2}}\right), \quad \epsilon \to 0^{+}$$

In the unitary gauge, for $M_Z \neq 0$, leads to the standard massive (Proca) Z^0 boson bare propagator

$$\Delta_{\mu\nu}^{Z^0} = -\frac{i}{p^2 - M_Z^2 + i\epsilon} \left(\eta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{M_Z^2} \right) - \frac{p_{\mu}p_{\nu}}{M_Z^2} \frac{i}{p^2 - \xi_Z m_Z^2 + i\epsilon}, \quad \epsilon \to 0^+$$

Emanuela Musumeci | CHEP 2024