

Gen-T

Probing New Physics at future e^+e^- colliders with two-particle angular correlations Emanuela Musumeci¹

 1 Instituto de Física Corpuscular – CSIC and University of Valencia, Spain 2 LPTHE, Sorbonne Université et CNRS, Paris, France 3 DRII-IPSA, Ivry-sur-Seine, France ⁴ Instituto Galego de Física de Altas Enerxías (IGFAE, USC), Spain ⁵ CERN, Geneva, Switzerland

Two-particle angular correlations

The two-particle correlation function is defined as

$$C^{(2)}(\Delta y, \ \Delta \phi) = rac{S(\Delta y, \ \Delta \phi)}{B(\Delta y, \ \Delta \phi)},$$

where $S(\Delta y, \Delta \phi)$ stands for the density of particle pairs within the same event

$$S(\Delta y, \ \Delta \phi) = rac{1}{N_{
m pairs}} rac{d^2 N^{
m same}}{d\Delta y d\Delta \phi},$$

while $B(\Delta y, \Delta \phi)$ represents the density of mixed particle pairs from distinct events

$$B(\Delta y, \ \Delta \phi) = \frac{1}{N_{\text{mix}}} \frac{d^2 N^{\text{mix}}}{d\Delta y d\Delta \phi}.$$

The *azimuthal yield* $Y(\Delta \phi)$ is of particular interest, being defined by integration over a Δy range as:

$$Y(\Delta \phi) = \frac{\int_{y_{\inf} \le |\Delta y| \le y_{\sup}} S(\Delta y, \ \Delta \phi) dy}{\int_{y_{\inf} \le |\Delta y| \le y_{\sup}} B(\Delta y, \ \Delta \phi) dy},$$

where $y_{inf/sup}$ defines the lower/upper integration limit for different rapidity intervals. Can the study of two-particle angular correlations be a tool for investigating New Physics?

The New Physics we explore is a Hidden Valley(HV) model, in which the communicators F_v are pair-produced and can promptly decay as $F_v \to fq_v$, where f is the corresponding particle in the visible sector and q_v is a v-quark belonging to the hidden sector. In e^+e^- collisions, F_v can be produced via $e^+e^- \to \gamma^*/Z \to F_vF_v \to$ hadrons.

After Cuts

The selection cut efficiency shows a drastic reduction of the SM background

The signature we investigate is a perturbation in the conventional QCD cascade and final hadronization, leading to anomalies in angular correlations.

Analysis at detector level

We set $\sqrt{s} = 250$ GeV, to match the collider's Higgs boson factory phase, considering unpolarized beams.

The HV signal proceeds via the process $e^+e^- \to D_v D_v \to$ hadrons (where D_V denotes the lightest communicator, being the hidden partner of the *d*-quark). The Standard Model (SM) background is dominated by $q\bar{q}$ production in association with

eld Y($\Delta \phi$) for both HV+SM signal(blue) and SM background (red) for the $0 < |\Delta y| < 1.6$ interva Figure 7: Expected experimental sensitivity for HV after collecting 100 of integrated luminosity

Initial State Radiation (ISR) and 4-quark production via $e^+e^- \rightarrow WW$.

Process $@$ 250 GeV	$\sigma_{\mathrm{PYTHIA}} \left[\mathrm{pb} \right]$
$e^+e^- \rightarrow D_v \bar{D}_v$	0.12
$e^+e^- \rightarrow q\bar{q}$ with ISR	48
$WW \to 4q$	7.4

The thrust reference frame has been used throughout this work.

Tools Cuts

• Monte Carlo Event generator: **Pythia8** • No secondary vertices

• Detector simulation: SGV 3.0

 \rightarrow ILD geometry

• Analysis: ILCSOFT, ROOT

• neutral PFOs ≤ 22 , charged PFOs ≤ 15

• $|\cos \theta_{\gamma_{ISR}}| < 0.5$ and $E_{\gamma_{ISR}} < 40$ GeV

• $E_{jet} < 80 \text{ GeV}$ and $m_{jj} < 130 \text{ GeV}$

In the $0 < |\Delta y| \le 1.6$ range, a sizeable peak at $\Delta \phi \sim \pi$ characterises the HV scenario, unlike the pure SM case. This remarkable discrepancy of shapes could potentially serve as a valuable signature of a hidden sector, complementary to more conventional searches.

Conclusions

The analysis of two-particle angular correlations can serve as a complementary tool to traditional methods in the search for new phenomena beyond the Standard Model physics. This study investigates the discovery potential for hidden sectors at future e^+e^- colliders through two-particle angular correlations, focusing on a QCD-like hidden valley model.

References:

[1] EM et al, Exploring hidden sectors with two-particle angular correlations at future e^+e^- colliders, 3312.06526 ⊠ emanuela.musumeci@ific.uv.es

