A2ND INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS 19-24 July 2024

A large-area prototype SiPM readout plane for the ePIC-dRICH detector at the EIC

Luigi Rignanese on behalf of the ePIC dRICH collaboration

Outline:

- The Electron-Ion Collider and the ePIC
 detector
- SiPMs and radiation damage
- Prototype
- Test beam results

The Electron-Ion Collider

The major US project in the field of nuclear physics

• Operating in the early '30s

The world's first collider for

- Polarized electron-proton (and light ions)
- Electron-nucleus collisions

High Luminosity: 10³⁴ cm²s⁻¹ Wide energy span → 20-140 GeV Inclusive/semi-inclusive DIS

• understand origin of mass & spin of the nucleons

3D images of the nuclear structure (GPD)

ePI

ICHEP 2024 - 18-24 July 2024 - Luigi Rignanese <u>rignanes@bo.infn.it</u>

 \boldsymbol{P}

 (\mathbf{u})

ePIC

Magnet

• New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (μRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

ePIC

Magne

• New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- "Excellent particle identification (PID) is required to separate $\pi/K/p$
- at the level of 3 σ up to 50 GeV/c in the forward region, up to 10 GeV/c in the central detector region, and up to 7 GeV/c in the backward region"
- dual RICH (aerogel + gas) (forward
- EIC yellow report https://doi.org/10.1016/j.nuclphysa.2022.122447

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

The dual-radiator (dRICH)

SiPMs are the best candidates

- Small and cheap
- Insensitive to magnetic field
- High photo-detection efficiency (PDE)
- High gain-**single photon** detection
- Low voltage operation
- Excellent **timing** performance

- x High DCR @ room temperature
- x Low radiation tolerance
 - DCR increases with dose

But:

factor ~ **100**

- High DCR @ room temperature Х
- x Low radiation tolerance

DCR increases with **dose**

Annealing techniques (high temperature process) to recover **DCR** performance loss

Sub ns time resolutions allow coincidence cuts that greatly reduces **DCR** contribution in the measurements

Cooling the sensors down to – 30° C reduces the DCR by a

Radiation levels on the dRICH

Luigi Rignanese rignanes@bo.infn.it

Radiation levels on the dRICH

Luigi Rignanese rignanes@bo.infn.it

SiPMs radiation damage studies and annealing (2021)

Irradiation campaigns with protons at TIFPA (TN)

<mark>Measurements taken @ -30° C</mark>

R. Preghenella et al., Nucl.Instrum.Meth.A 1056 2023

SiPMs current annealing

Annealing by heating up the sensors. Direct polarized "high" current flowing into the SiPM. 175° C with 10 V and ~100 mA (~ 1 W) per sensor.

SiPMs current annealing

Annealing by heating up the sensors. Direct polarized "high" current flowing into the SiPM. 175° C with 10 V and ~100 mA (~ 1 W) per sensor.

SiPMs aeging model

Photodetector design and layout

Photodetector design and layout

ALCOR ASIC by INFN-To

32-pixel matrix mixed signal ASIC initially foreseen for SiPMs in cryogenics

The chip performs **amplification**, **signal conditioning** and **event digitization** with a fully **digital I/O**

Each **pixel** features

- Regulated common gate amplifier (10 Ω impedance)
- Post amp TIA for **4 gain settings**
- 2 leading-edge discriminators with independent threshold settings
- 4 TDCs based on analogue interpolation with 50 ps LSB (@ 320 MHz)
- 3 triggerless operation modes:
 - LET leading edge threshold measurement, high-rate time-stamp
 - **ToT** Time-over-Threshold
 - Slew rate

Fully **digital output** on **4 LVDS TX** data links **SPI-based** chip configuration **64-bit** event and **status** data

R. Kugathasan <u>PoS TWEPP2019 (2020) 011</u>

PDU prototype

L. Rignanese et al., JINST 19 (2024) 02, C02062

carrier board

4 matrixes of **8x8** Hamamatsu S13650 **SiPMs** (256) on rigid-flex pcb 4 **ntc** sensors on the back

4x adapters

HV regulation AC coupling to ALCOR

2x ALCOR-v2 (8 total) 2x Firefly connectors

Detector box prototype

8x

Detector box prototype

20x20x20 cm³

 \approx **400** cm² optical surface (1/10 of a dRICH sector)

2048-Hamamatsu S13360 SiPMs

2 different SPAD sizes (**50** and **75** um)

2 mm dead layer between PDUs

64 ALCOR v2 ASICS

2048 TDC channels electronics

800 Mb/s data rate

TEC active cooling (≈400 W)

Automatically controlled temp down to -40 °C

10 °C water cooling

-40 °c		- 39.4 ∘c		- 39.9 ∘c		^{mean} −39.8 °C	
NTC 1	NTC 2	NTC 1	NTC 2	NTC1	NTC 2	NTC 1	NTC 2
- 39.8 °C	- 40 °C	- 39.4 °C	- 39.8 °C	- 39.9 °C	- 40.1 °C	- 39.8 °C	- 40.1 °C
NTC 3	NTC 4	NTC 3	NTC 4	NTC 3	NTC 4	NTC 3	NTC 4
-39.9 °C	-40.4 °C	-39.3 °C	- 39.7 °C	- 39.9 °C	-40.2 °C	-39.8 °C	-40.4 °C

2024 test beam at CERN PS (ended 5 June)

2024 test beam at CERN PS (ended 5 June)

Reconstructed radii vs. beam momentum

Reconstructed radii vs. beam momentum

10 GeV/c positive beam with no selection applied

10 GeV/c positive beam with π in gas as veto

Successfull **R&D** program to operate **SiPM** in mild **radiation** environment through annealing 400 cm² demonstrator with full electronics readout working with dRICH prototype First SiPMs application for a RICH in HEP experiment

