Expected Performance of Cosmic Muon Veto Detector at IICHEP, Madurai, India.

Raj Shah^{1,2}, Gobinda Majumder², Prashant Shukla³

Homi Bhabha National Institute, Mumbai, India. 2 Tata Institute of Fundamental Research, Mumbai, India. ³ Bhabha Atomic Research Center, Trombay, India

Objective

- Explore feasibility of building a large scale neutrino detectors at shallow depths.
- Achieve muon veto efficiency of over 99.99 % simultaneously mainintaing fake rate of less than 10^{-5} .

Cosmic Muon Veto Detector

Integrated Dark Noise

• Integrated (100 ns) dark noise added in all ~ 3000 SiPM.

- Active Detector: Extruded Plastic Scintillator (EPS)
- Light Collection: Two 1.4 mm dia double clad WLS
- Readout: $2mm \times 2mm$ Hamamatsu SiPM's
- \approx 750 EPS and 3000 SiPM's

Veto Wall	# of Layers	Layer staggering	# of EPS	EPS dimensions
Тор	4	12.5 mm	88/Layer	$4.5 m \times 5 cm \times 1$ - $2 cm$
Right Side	3	15 mm	40/Layer	$4.6m \times 5cm \times 1cm$
Left Side	3	15 mm	40/Layer	$4.6m \times 5cm \times 1cm$
Back Side	3	15 mm	40/Layer	$4.7m \times 5cm \times 1cm$
Auxiliary	3	15 mm	1/Layer	$2.1m \times 5cm \times 2cm$

Charge Measurement

• Birk's Scaling: Light yield scales with energy deposition:

0 0.5 1 1.5 2 2.5 Q_{ch1} (pC)

• Noise event Tagging.

Clustering Scheme

- Hit formation 2 or SiPM's have signal > 2.5 p.e.
- Nearby related hits in a layer are combined into "Clusters".
- Clusters are combine to form doublets, then triplets if related.
- SuperCluster: In the top wall, triplets and doublets combine to form quartets.

Track Reconstruction and Extrapolation

- With Magnetic Field: Kalman Filter based algorithm.
- Without Magnetic Field: Least Square Method.
- Extrapolation: Evaluate closest distance, d_{clos} between track and EPS.

- Photon Production: Follows Poisson distribution with mean $Y \times E_{dep}$.
- Photon Detection: $N_{\text{SiPM}} = N_{\text{prod}} \frac{p_1 e^{-p_1 x} + p_2 p_3 e^{-p_3 x}}{p_1 + p_2 p_3}$
- Observed Charge (Q): Gaussian with mean $G_{SiPM} \times N_{SiPM}$ and variance $\sigma_{
 m ped}^2 + N_{
 m SiPM}\sigma_{
 m sig}^2.$

Effective Area of Veto Walls

Expected Performance

100

Model Validation

Timing Performance

- Time resolution is mainly affected by the Y-11 WLS fiber's 7ns time constant. • Position uncertainty: $36.76 \pm 1.13 \ cm$.
- Larger position uncertainties for low charge signals over longer distances.

Summary

Software is developed based on inputs from experimental data to evaluate the performance of CMVD around miniICAL. Using extrapolated muon tracks from the mini-ICAL, veto criteria is established to achive efficiency > 99.99 %. Observed efficiency is $99.9929\% \pm 0.0005\%$ for d_{clos} up to 30 cm with magnetic field. Additionally the purity of the simulated sample (~ 8.5M) is observed to be 100.