NNLO fits of top-quark mass using total, singledifferential and double-differential tt+X cross-section data Sergey Alekhin¹ - Maria Vittoria Garzelli^{1,2} - Javier Mazzitelli³ - Sven-Olaf Moch¹ - Sasha Zenaiev¹ see [arXiv:2311.05509], in JHEP 05 (2024) 321

¹Hamburg Universitaet - II Institut fuer Theoretische Physik, maria.vittoria.garzelli@desy.de ¹Universita' degli Studi di Cagliari - Dipartimento di Fisica ³PSI - Villigen

Top-quark mass can be extracted by comparing experimental data on top-quark production to theory predictions. We preform an extraction at NNLO QCD. Input:

- cross-sections computed with MATRIX [Catani et al. JHEP 07 (2019) 100] + PineAPPL [Carrazza et al., JHEP 12 (2020) 108]
- modern PDF sets: ABMP16,CT18, MSHT20, NNPDF4.0, with their associated $a_s(M_7)$ values.
- experimental data: total cross-sections, single differential and double-differential distributions for top-antitop production

experiment	decay channel	dataset	luminosity	\sqrt{s}	Experiment	decay channel	dataset	luminosity	\sqrt{s}	observable(s)	n
ATLAS & CMS	combined	2011	5 fb^{-1}	$7 { m TeV}$	CMS	semileptonic	2016-2018	137 fb^{-1}	13 TeV	$M(t\bar{t}), y(t\bar{t}) $	34
ATLAS & CMS	combined	2012	$20 {\rm ~fb^{-1}}$	$8 { m TeV}$	CMS	dileptonic	2016	$35.9 { m ~fb^{-1}}$	$13 \mathrm{TeV}$	$M(t\overline{t}), y(t\overline{t}) $	
ATLAS	dileptonic, semileptonic	2011	257 pb^{-1}	$5.02 { m TeV}$	ATLAS	semileptonic	2015 - 2016	36 fb^{-1}	13 TeV	$M(t\overline{t}), y(t\overline{t}) $	
CMS	dileptonic	2011	302 pb^{-1}	$5.02 { m TeV}$	ATLAS	all-hadronic	2015 - 2016	36.1 fb^{-1}	13 TeV	$M(t\bar{t}), y(t\bar{t}) $	
ATLAS	dileptonic	2015 - 2018	$140 { m ~fb^{-1}}$	$13 { m TeV}$	CMS	dileptonic	2010 2010 2012	19.7 fb^{-1}	8 TeV	$M(t\bar{t}), y(t\bar{t}) $ $M(t\bar{t}), y(t\bar{t}) $	
ATLAS	semileptonic	2015 - 2018	$139 { m ~fb^{-1}}$	$13 { m TeV}$	ATLAS	semileptonic	2012	20.3 fb^{-1}	8 TeV	$M(t\bar{t})$	6
CMS	dileptonic	2016	$35.9 { m ~fb^{-1}}$	$13 { m TeV}$	ATLAS	dileptonic	2012	20.3 fb^{-1} 20.2 fb^{-1}	8 TeV	$M(t\bar{t})$ $M(t\bar{t})$	5
CMS	semileptonic	2016-2018	$137 { m ~fb^{-1}}$	$13 { m TeV}$		1					4
ATLAS	dileptonic	2022	$11.3 { m ~fb^{-1}}$	$13.6 { m TeV}$	ATLAS	dileptonic	2011	4.6 fb^{-1}	$7 { m TeV}$	$M(t\bar{t})$	4
\mathbf{CMS}	dileptonic, semileptonic	2022	$1.21 { m ~fb^{-1}}$	$13.6 { m TeV}$	ATLAS	semileptonic	2011	$4.6 {\rm ~fb^{-1}}$	$7 { m TeV}$	$M(t\overline{t})$	4

Validation differential calculation with MATRIX at NNLO vs CHM one

	Total	cross-section-data	selection	criteria
--	-------	--------------------	-----------	----------

Data considered in the LHC Top Working Group (June 2023, there is a 2024 update that however we expect to play only a minor role on our results).

- we focus on $d\sigma/dM(t\bar{t})$ and $d^2\sigma/dM(t\bar{t})dy(t\bar{t})$ distributions.
- We use measurements where the experimental collaborations provide unfolding to the inclusive parton level ($t\bar{t}$) (MATRIX is being extended at decayed-top level only now, LHCb data so far only available at the particle level).
- We used measurements normalized, to reduce the effect of lack of information concerning correlations of uncertainties between different experimental analyses (source by source available only in CMS dilepton analyses!).
- we used measurements for which info on bin-by-bin correlated uncertainties are available.
- Production sensitive to α_s and m_t
- May provide insight into possible new physics

Results of the non-local subtraction method q_-subtraction implemented in MATRIX) are in agreement within $\sim 1\%$ with those of the local subtraction method STRIPPER implemented in CHM (Czakon et al., JHEP 04 (2017) 071).

 $250 < M(t\bar{t}) < 420$ GeV $420 < M(t\bar{t}) < 520$ GeV $520 < M(t\bar{t}) < 620$ GeV $620 < M(t\bar{t}) < 800$ GeV $800 < M(t\bar{t}) < 1000$ Ge $1000 < M(t\bar{t}) < 3500$ GeV $620 < M(t\bar{t}) < 800$ GeV $800 < M(t\bar{t}) < 1000$ GeV $1000 < M(t\bar{t}) < 3500$ GeV $1000 < M(t\bar{t}) < 1000$ GeV MS 2108.02803 13TeV semileptoni 10 INLO ABMP16 $\mu = H_T/4$ $n_{bole}^{pole} = 172.5 \text{GeV} \chi^2 = 20$ $n_{bole}^{pole} = 170.0 \text{GeV} \chi^2 = 34$ $e = 175.0 \text{GeV} \chi^2 = 6$ 등 10-1.4 1.2 ~ 0 0.8 0. 2 0.0 0.5 2 0 2 0 2 0 2 0 $|y(t\bar{t})|$

- Using ABMP16, $\mu_r = \mu_f = H_T/4$
- Reported χ^2 values with PDF uncertainties
- Large sensitivity to m_t^{pole} in the first $M(t\bar{t})$ bin (and due to x-section normalisation, also in other $M(t\bar{t})$ bins)

Theory predictions vs. 2-diff data at 13 TeV: summary

Theory predictions using different PDFs vs. CMS exp. data from arXiv;1904.05237 (dileptocnic top-quark
decays) and arXiv:2108.02803 (semileptonic top-quark decays)

- Reported χ^2 values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well
 - But CT18, MSHT20 and NNPDF40 show clear trend w.r.t data at high $y(t\bar{t})$ (large x)

 $970 < M(t\bar{t}) < 3000 \text{GeV}$

X18 X2=17(22 MSH120 X2=17(12 X2=17(12) X=17(12) X=17(12)

0.2

0.6

0.4

lv(tt)

Total unc.

HData unc

➡ PDF unc.

-Scale unc.

NNLO $m_t^{pole} = 172.5 \text{ GeV } \mu = H_T/4$

ATLAS 2006.09274 13TeV all-hadronic

This is the most precise currently available dataset with finest bins

700 < M(tt) < 970GeV

0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0

• $\chi^2/dof < 1$ indicating possible overestimation of experimental uncertainties

• Fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}, \ \mu_r = \mu_f = H_T/4$

All PDF sets describe data reasonably well

• Reported χ^2 values with (and without) PDF uncertainties

Theory predictions using different PDFs vs. ATLAS exp. data from arXiv:1908.07305 (semileptonic top-quark decays) and arXiv:2006.09274 (all-hadronic top-quark decays)

⁻¹⁰

1.4

1.2

0.0

 $0 < M(t\bar{t}) < 700 \text{GeV}$

• Fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}, \ \mu_r = \mu_f = H_T/4$

- Reported χ^2 values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well.

among datasets ?

CMS 1703.01630

ATLAS 1607.07281

ATLAS 1607.07281

• $\chi^2/dof < 1$ indicating possible overestimation of experimental uncertainties (additionally, the data covariance matrix is not singular, i.e. $det(cov) \neq 0$: to be checked if this is related to some numerical inaccuracy or other reasons. This affects estimates of correlated uncertainties. Same issue in the $\sqrt{s} = 8$ TeV ATLAS analysis [arXiv:1607.07281].

PDF	<mark>tī</mark> data in PDF fit	χ^2/NDP (all data)			
		w/ PDF unc.	w/o PDF unc.		
ABMP16	only total $\sigma(t\bar{t} + X)$	56/78	61/78		
CT18	total and diff. $\sigma(t\bar{t} + X)$	80/78	250/78		
MSHT20	total and diff. $\sigma(t\bar{t} + X)$	92/78	196/78		
NNPDF4.0	total and diff. $\sigma(t\bar{t} + X)$	104/78	139/78		

Extraction of the top-quark pole mass: global analysis

- χ^2 minimum is determined using parabolic interpolation of 3 points with lowest χ^2 values •
- Both experimental, theory numerical, and PDF uncertainties included in χ^2
- Δm_t^{pole} uncertainty $\sim \pm 0.3$ GeV quoted in the plots takes into account all uncertainties included in the covariance matrix ($\Delta \chi^2 = 1$).
- Scale variations are not included in χ^2 (the uncertainties do not follow a gaussian) distribution) but they are done explicitly (offset method) (span an interval of $\sim 0.2 \, \text{GeV}$)

	🗢 Total unc
ATLAS+CMS Run1 differential	🛏 Data unc.
ABMP16	PDF unc.
СТ18	Scale unc
MSHT20	1
NNPDF40	

- Global Run-1 + Run-2 fit: extracted m_t^{pole} values with precision $\pm 0.3 \,\text{GeV}$ are consistent with PDG value 172.5 ± 0.3 GeV
 - data uncertainty $\sim 0.2 0.3 \, \text{GeV}$
 - ► PDF uncertainty ~ 0.1 0.2 GeV
 - ► NNLO scale uncertainty ~ 0.1 0.2 GeV

in case of total cross-sections only, m^{pole}

CMS 2108.02803 13TeV semileptonic

- uncertainties dominated by scale variation effects
- for each PDF set, compatibility within uncertainties between m_t^{pole} extracted using Run-1 or Run-2 differential data
- compatibility within uncertainties among m^{pole}_t extracted using as input different (PDF+ $\alpha_s(M_z)$) sets
- Significant dependence of the central m_t^{pole} value on PDFs ($\sim 0.6 \text{ GeV}$):
 - different m^{pole} used in different PDFs **PDFs**, m_t^{pole} (and α_s (M_Z)) should be determined simultaneously

Experimental analyses with full Run 2 luminosity and further Run **3** studies are needed to resolve the $\sim 2\sigma$ tensions observed

Conclusions:

This work paves the way towards simultaneous NNLO fits of the gluon PDFs, the top-quak mass and the strong coupling constant. We have performed such a fit in [arXiv:2407.00545].

Acknowledgments: this work was supported in part by BMBF, by DFG and by the Humboldt Foundation