- cross-sections computed with MATRIX [Catani et al. JHEP 07 (2019) 100] + PineAPPL [Carrazza et al., JHEP 12 (2020) 108] - modern PDF sets: ABMP16,CT18, MSHT20, NNPDF4.0, with their associated $\mathrm{a}_{\mathrm{s}}(\mathsf{M}_{_{\mathrm{Z}}})$ values.

Top-quark mass can be extracted by comparing experimental data on top-quark production to theory predictions. We preform an extraction at NNLO QCD. **Input:**

- experimental data: total cross-sections, single differential and double-differential distributions for top-antitop production

Theory predictions using different PDFs vs. ATLAS exp. data from arXiv:1908.07305 (semileptonic top-quark decays) and arXiv:2006.09274 (all-hadronic top-quark decays)

• Fixed $m_t^{\text{pole}} = 172.5 \,\text{GeV}, \, \mu_r = \mu_f = H_T/4$

- Reported χ^2 values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well.
- $\bullet \ \chi^2$ /dof < 1 indicating possible overestimation of experimental uncertainties (additionally, the data covariance matrix is not singular, i.e. det(cov) \neq 0: to be checked if this is related to some numerical inaccuracy or other reasons. This affects estimates of correlated uncertainties. Same issue in the $\sqrt{s} = 8$ TeV ATLAS analysis [arXiv:1607.07281].

- Fixed $m_t^{\text{pole}} = 172.5$ GeV, $\mu_r = \mu_f = H_T/4$
- Reported χ^2 values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well
- σ χ^2 /dof < 1 indicating possible overestimation of experimental uncertainties

Theory predictions vs. 2-diff data at 13 TeV: summary

Results of the non-local subtraction $method$ **q**_r-subtraction **implemented in MATRIX) are in agreement within ~1% with those of the local subtraction method STRIPPER implemented in CHM (Czakon et al., JHEP 04 (2017) 071).**

Extraction of the top-quark pole mass: global analysis

- χ^2 minimum is determined using parabolic interpolation of 3 points with lowest χ^2 values
- Both experimental, theory numerical, and PDF uncertainties included in χ^2
- \bullet Δm_t^{pole} uncertainty $\sim \pm$ 0.3 GeV quoted in the plots takes into account all uncertainties included in the covariance matrix ($\Delta \chi^2 = 1$).
- Scale variations are not included in χ^2 (the uncertainties do not follow a gaussian distribution) but they are done explicitly (offset method) (span an interval of \sim 0.2 GeV)

- Global Run-1 + Run-2 fit: extracted m_t^{pole} values with precision \pm 0.3 GeV are consistent with PDG value 172.5 ± 0.3 GeV
	- data uncertainty $\sim 0.2 0.3$ GeV
	- PDF uncertainty $\sim 0.1 0.2$ GeV
	- NNLO scale uncertainty $\sim 0.1 0.2$ GeV

• in case of total cross-sections only, m_t^{pole}

MTotal unc.

→Data unc.

 \rightarrow PDF unc.

 $-$ Scale unc.

- uncertainties dominated by scale variation effects
- for each PDF set, compatibility within uncertainties between m_t^{pole} extracted using Run-1 or Run-2 differential data
- compatibility within uncertainties among m_t^{pole} extracted using as input different (PDF+ $\alpha_s(M_z)$) sets
- Significant dependence of the central m_t^{pole} value on PDFs (~ 0.6 GeV):
	- ightharpoording different PDFs different PDFs PDFs, m_t^{pole} (and α_s (M_Z)) should be
	- determined simultaneously

Conclusions:

This work paves the way towards simultaneous NNLO fits of the gluon PDFs, the top-quak mass and the strong coupling constant. We have performed such a fit in [arXiv:2407.00545].

Acknowledgments: this work was supported in part by BMBF, by DFG and by the Humboldt Foundation

Theory predictions using different PDFs vs. CMS exp. data from arXiv;1904.05237 (dileptocnic top-quark decays) and arXiv:2108.02803 (semileptonic top-quark decays)

• Fixed $m_t^{\text{pole}} = 172.5 \text{ GeV}, \mu_r = \mu_f = H_T/4$

- Reported χ^2 values with (and without) PDF uncertainties
- All PDF sets describe data reasonably well
	- But CT18, MSHT20 and NNPDF40 show clear trend w.r.t data at high $y(t\bar{t})$ (large x)

• This is the most precise currently available dataset with finest bins

Experimental analyses with full Run 2 luminosity and further Run 3 studies are needed to resolve the ~2 tensions observed

NNLO fits of top-quark mass using total, singledifferential and double-differential tt+X cross-section data Sergey Alekhin¹ - Maria Vittoria Garzelli1,2 – Javier Mazzitelli 3 – Sven-Olaf Moch 1 – Sasha Zenaiev 1 see [arXiv:2311.05509], in JHEP 05 (2024) 321

¹Hamburg Universitaet – II Institut fuer Theoretische Physik, *maria.vittoria.garzelli@desy.de* **¹Universita' degli Studi di Cagliari - Dipartimento di Fisica ³PSI - Villigen**

Total cross-section-data selection criteria Differential-data selection criteria

• Data considered in the LHC Top Working Group (June 2023, there is a 2024 update that however we expect to play only a minor role on our results).

- we focus on $d\sigma/dM(t\bar{t})$ and $d^2\sigma/dM(t\bar{t})dy(t\bar{t})$ distributions.
- We use measurements where the experimental collaborations provide unfolding to the inclusive parton level $(t\bar{t})$ (MATRIX is being extended at decayed-top level only now, LHCb data so far only available at the particle level).
- We used measurements normalized, to reduce the effect of lack of information concerning correlations of uncertainties between different experimental analyses (source by source available only in CMS dilepton analyses!).
- we used measurements for which info on bin-by-bin correlated uncertainties are available.

\Rightarrow constrain gluon PDF at high x

- Production sensitive to α_s and m_t
- May provide insight into possible new physics

Validation differential calculation with MATRIX at NNLO vs CHM one

Sensitivity to top-quark mass

 $250 < M(t) < 420$ GeV $420 < M(t) < 520$ GeV $520 < M(t) < 620$ GeV $620 < M(t) < 800$ GeV MS 2108.02803 13TeV semileptonio 10 NLO ABMP16 $\mu = H\vec{t}/4$ $\gamma_{\text{pole}}^{\text{pole}} = 172.5 \text{GeV} \chi_{1}^2 = 26.5 \text{eV} \chi_{2}^2 = 26.5 \text{eV} \chi_{1}^2 = 34.5 \text{eV} \chi_{2}^2 = 34.5 \text{eV} \chi_{2$ $x^2 = 175.0$ GeV $y^2 = 0$ $\widehat{=}$ 10⁻¹ 1.4 1.2 00000 0 000000 00000 0 00000 0 00000 $\overline{}$ 0. 0. $2 \quad \theta$ 2 0.0 0.5 2 0 2 0

• Using ABMP16, $\mu_r = \mu_f = H_T/4$

• Reported χ^2 values with PDF uncertainties

• Large sensitivity to m_t^{pole} in the first $M(t\bar{t})$ bin (and due to x-section normalisation, also in other $M(t\bar{t})$ bins)

