Electroweak Precision Physics at the FCC-ee

Tadeusz Lesiak Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN), Kraków

- 1. FCC project in a nutshell
- 2. FCC-ee Electroweak Physics Programme

See also the following FCC talks:

- 515 "Flavour and tau physics at FCC-ee" Aidan Wiederhold
- 504 "High precision QCD physics at FCC-ee" Stefan Kluth
- 489 "Higgs physics opportunities at the FCC" Giovanni Marchiori
- 494 BSM physics and Heavy Neutral Lepton Fcsearches at FCC-ee Nicolo Valle

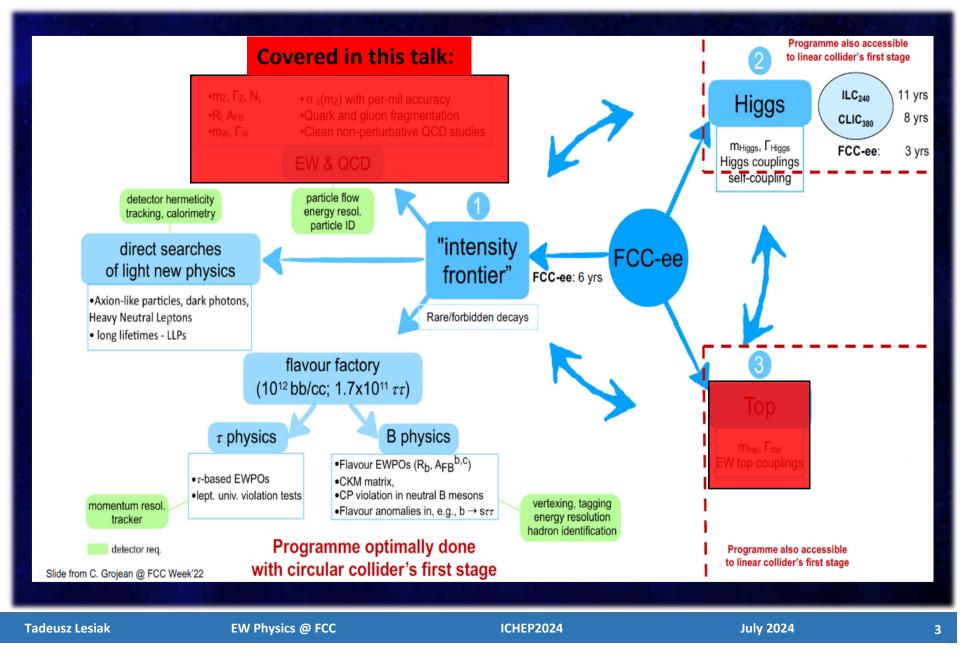
Future Circular Collider Project

FCC - global international collaboration hosted at CERN

FUTURE

CIRCULAR

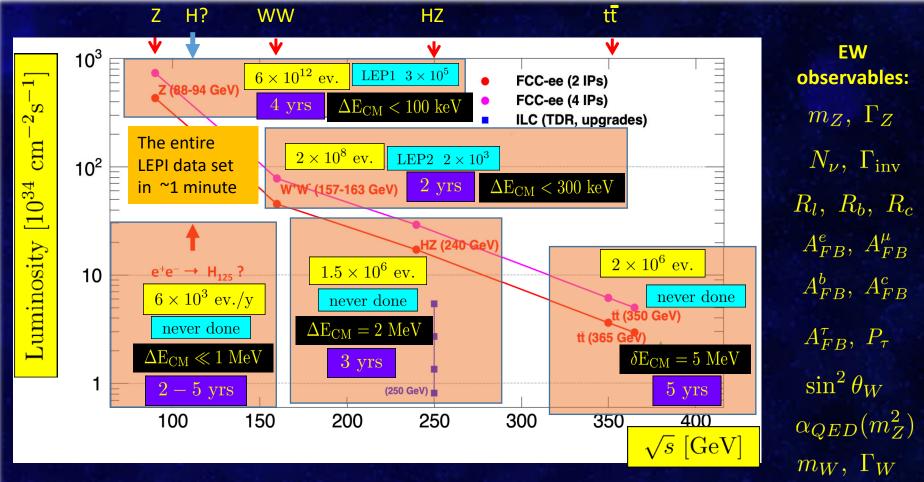
- Oth stage: construction of ~91 km circumference tunnel infrastructure in Geveva area to host:
- Ist stage FCC-ee: electron positron collisions (90-360) GeV
- 2nd stage FCC-hh: proton-proton collisions at ~100 TeV
- Options of AA and eh also envisioned



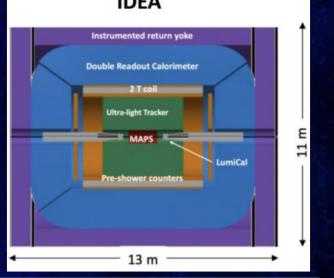
FCC-ee Physics Program

FUTURE

CIRCULAR



FCC-ee Working Points


- Optimal energy range for SM particles!
- HZ and ttbar thresholds never investigated at leptonic colliders !
- Circular colliders can serve up to 4 IPs → increase discovery potential and the community, better accelerator monitoring, robustness of systematic uncertainties, detector diversity, sustainability...

 m_t, Γ_t

FCC-ee Detectors

- Detector design based on experience from LEP/ILC/CLIC/LHC & generic detector R&D , with the following requirements
 - Matching systematic errors to the very small statistical uncertainties expected at the FCC-ee
 - Ability to withstand a large dynamic range in luminosity and energy
 - Si SVT: low material budget, cooling, MDI constraints (last focusing quadrupole +-2.2m from IP)
 - Tracker (Si, drift chamber, TPC): low material budget
 - Calorimeters: high granularity and identification capabilities (Particle Flow Algorithm PFA),
 power consumption, cooling
 IDEA
 - PID: dE/dx- gaseous detectors, compact RICH detectors
 - Hermeticity (forward region)
 - Precise luminosity detectors
 - Specific to the Z pole run: large collisions rates (~33 MHz), large event rates (~100 kHz), beamstrahlung
 - Cost: 300-400 MEUR
 - Three concepts: CLD, IDEA, ALLEGRO

Junjie Zhu talk at the FCC weak (San Franciso, June 2024): https://indico.cern.ch/event/1298458/contributions/5975666/attachments/2874286/5033190/DetectorRequirements_Zhu.pdf

FUTURE

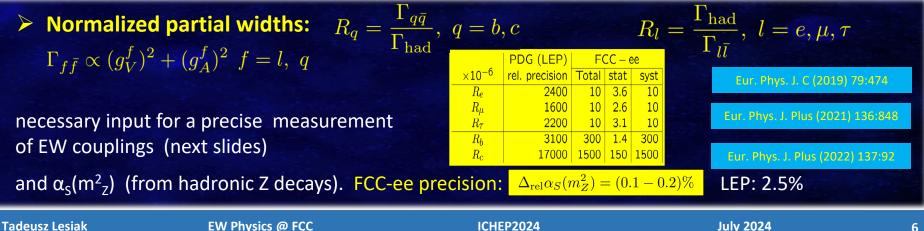
CIRCULAR COLLIDER

CIRCULAR The Z Lineshape Measurements

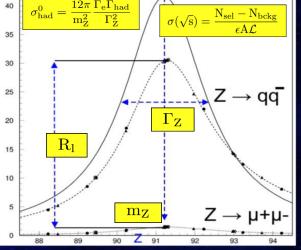
$N_Z = 2 \times 10^7$

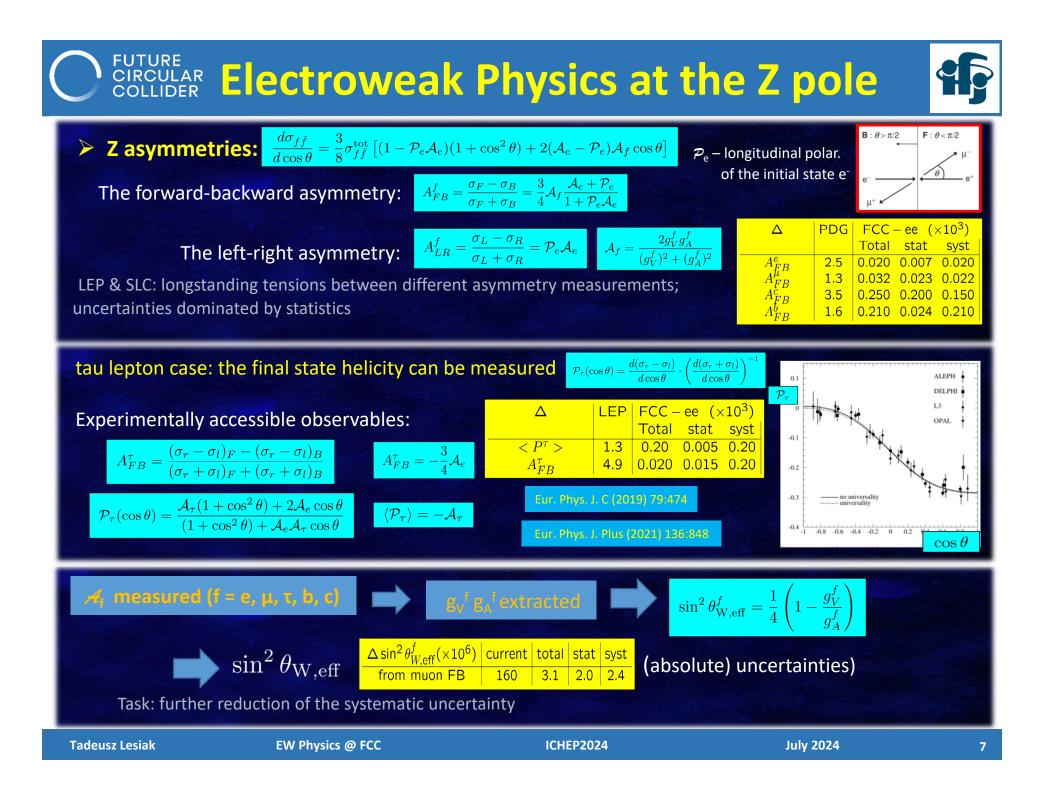
LEP

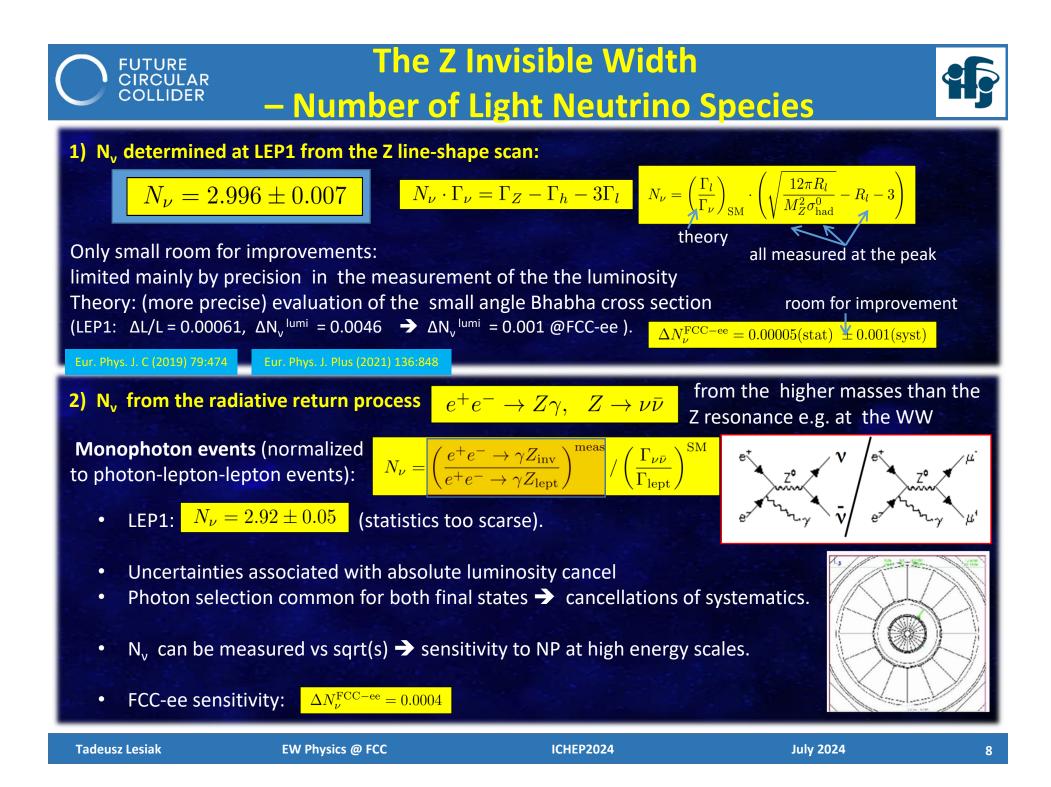
$N_Z \sim 6 \times 10^{12}$

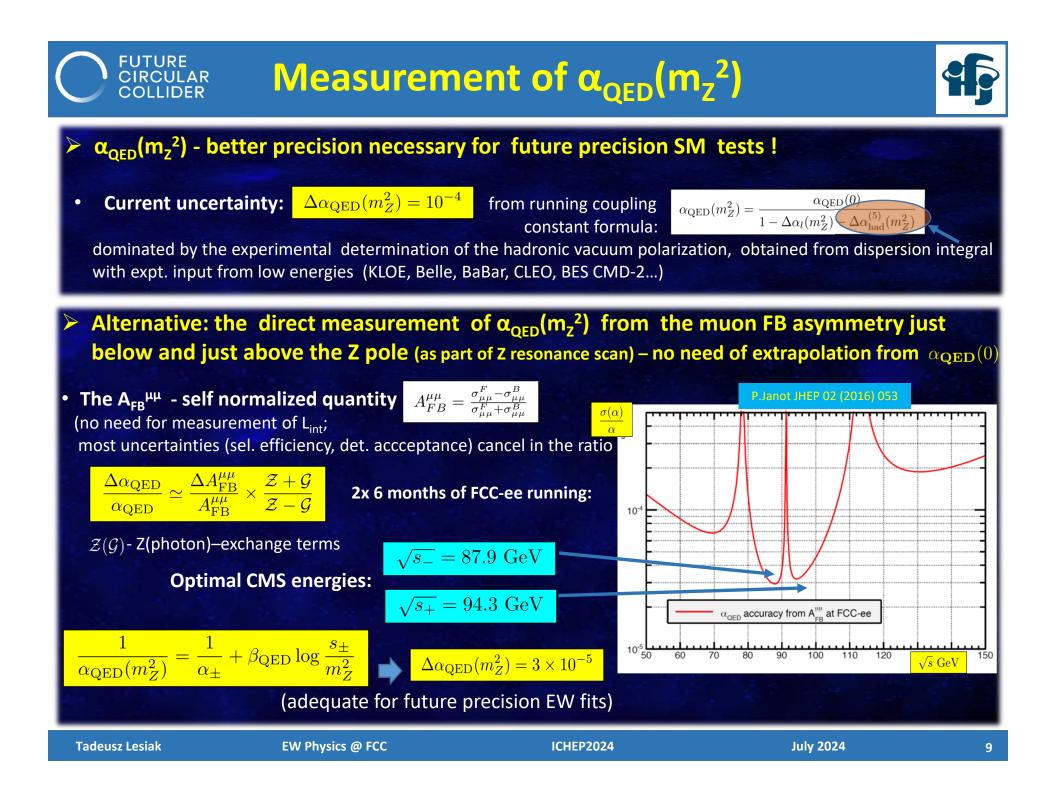

extreme statistical precision of EW observables

Z mass and width (from Z pole scan):

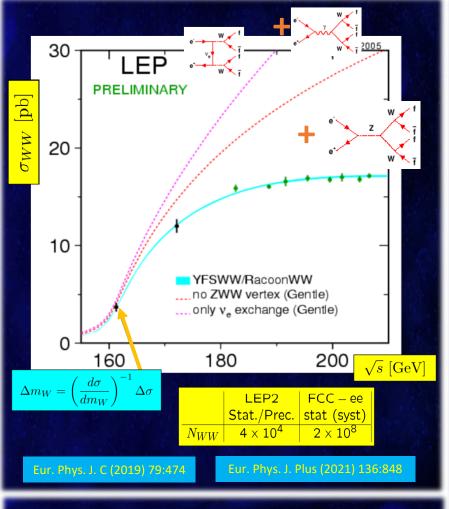

- The crucial factor limiting factor: uncertainty on the collision energy: continuous E_{CM} calibration (resonant depolarization of the transversely polarized beams)
- Experimental (big) challenge: match the detector capabilities to the statistical power
- **Theoretical challenges:** improved precision on predictions used for lumi measurement, deconvolution of QED effects; **EW/QCD** corrections

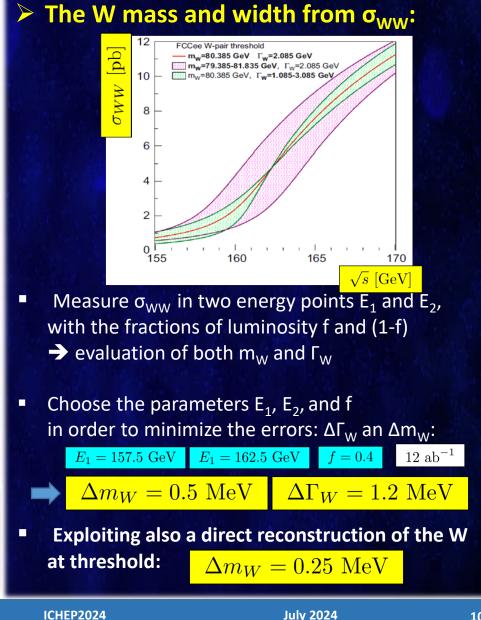

Δ [keV]	LEP	FCC – ee		
		Total	stat	syst
Z mass	2100	100	10	100
Z width	2300	25	4	25


 $100 \text{ ab}^{-1} \text{ at sqrt}(s) = 91.2 \text{ GeV}$ 50 ab⁻¹ at sqrt(s) = 87.9 GeV, 50 ab⁻¹ at 94.3 GeV



 $12\pi \Gamma_{\rm e}\Gamma_{\rm had}$ $\sigma_{\rm had}^0$ =





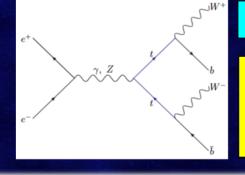
WW Pair Production at Threshold

Other W topics: W branching ratios (lepton universality, lapton-quark universality), TGCs, $\alpha_{s} (m_{W}^{2}) \dots$

FUTURE

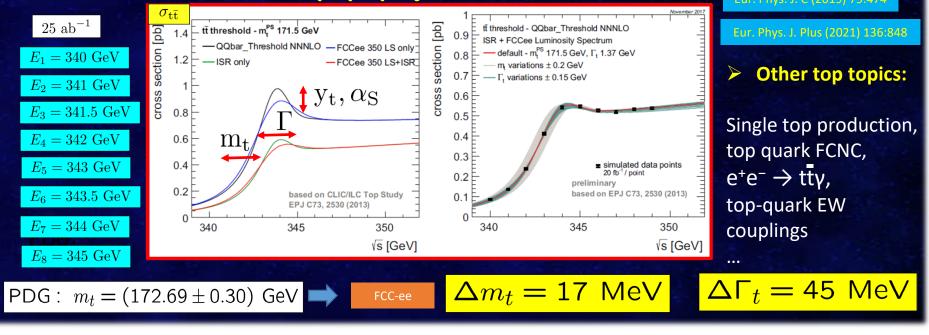
CIRCULAR COLLIDER

tt Pair Production at Threshold



Any next e⁺e⁻ collider:

FUTURE


CIRCULAR

for the 1st time the top quark to be studied using a precisely defined leptonic initial state

$e^+e^- \to Z/\gamma$	$\rightarrow t\bar{t} \rightarrow$	$(bW^+)(\bar{b}W^-)$
Final state	$\mathrm{BR}\ [\%]$	signature
Fully hadronic	46.2	6 jets
Semi leptonic	43.5	4 jets, 1 l^{\pm} , 1 ν
Fully leptonic	10.3	2 jets, 2 $l^{\pm},$ 2 $ u$

> The shape of the tt production cross-section at the threshold is computable to high precision and depends on m_t , Γ_t , y_t , α_s (and luminosity spectrum)

CIRCULAR Electroweak Observables: Instead of Summary

Eur. Phys. J. Plus (2022) 137.92									
Observable	unit	Present		FC	C-ee	0.10	(EWPO: stat. unc. only)		
		value	$\pm \mathrm{error}$	(stat.)	(syst.)		HL-LHC HL + CLIC ₃₈₀		
m_Z	[keV]	91 186 700	2 200	4	100	0.05			
Γ_Z	$[\mathrm{keV}]$	$2 \ 495 \ 200$	2 300	4	25				
$\sin^2 heta_W^{ ext{eff}}$	$[\times 10^{6}]$	231 480	160	2	2.4	0.00		1	
$1/lpha_{ m QED}(m_Z^2)$	$[\times 10^{3}]$	128 952	14	3	small				<mark>k parametric</mark>
R_l^Z	$[\times 10^{3}]$	20 767	25	0.06	0.2 -1	-0.05		uncert	tainties only
$lpha_S(m_Z^2)$	$[\times 10^{4}]$	1 196	30	0.1	0.4 - 1.6				HEPfit
$\sigma_{ m had}^0$	$[\times 10^3 \text{ nb}]$	41 541	37	0.1	4	-0.10			PRELIMINARY
N_{ν}	$[\times 10^{3}]$	2 996	7	0.005	1				November 2019
R_b	$[\times 10^{6}]$	216 290	660	0.3	< 60		-0.10 -0.05	0.00 0.	05 0.1
$A^{b,0}_{ m FB}$	$[\times 10^{4}]$	992	16	0.02	1-3	Sec. 1			Line in the second s
$A_{ m FB}^{ m pol, au}$	$[\times 10^{4}]$	1498	49	0.15	< 2	S			
au lifetime	[fs]	290.3	0.5	0.001	0.04		$2-\sigma$ region		
au mass	[MeV]	1776.86	0.12	0.004	0.04	0.10			
au leptonic BR	[%]	17.38	0.04	0.0001	0.003	22	HL+ILC ₂₅₀		
m_W	[MeV]	80 350	15	0.25	0.3	0.05	. 🔶 HL+CEPC ML+FCC _{ee}		
Γ_W	[MeV]	2085	42	1.2	0.3		HL+CLIC _{380,Giga Z}		
$lpha_S(m_W^2)$	$[\times 10^{4}]$	1 170	420	3	small	0.00		0	+ systematic
$m_{ m top}$	[MeV]	$172 \ 740$	500	17	small				
$\Gamma_{ m top}$	[MeV]	1 410	190	45	small	-0.05		u	ncertainties
mato	Important task and challenge: matching the systematic and theoretical uncertainties to the statistical power of the FCC-ee								
Tadeusz Lesiak					ICHEP2024		July 2024	±1	

CIRCULAR Electroweak Observables: Instead of Summary

Eur. Phys. J. Plus (2022) 137:92						
Observable	unit	Present		FCC-ee		68% and 95% prob. contours
		value	$\pm \text{ error}$	(stat.)	(syst.)	
m_Z	$[\mathrm{keV}]$	91 186 700	2 200	4	100	
Γ_Z	$[\mathrm{keV}]$	$2 \ 495 \ 200$	2 300	4	25	HL+FCC-ee
$\sin^2 heta_W^{ ext{eff}}$	$[\times 10^{6}]$	$231 \ 480$	160	2	2.4	
$1/lpha_{ m QED}(m_Z^2)$	$[\times 10^{3}]$	128 952	14	3	small	
R_l^Z	$[\times 10^{3}]$	20 767	25	0.06	0.2-1	
$lpha_S(m_Z^2)$	$[\times 10^4]$	1 196	30	0.1	0.4-1.6	175 –
$\sigma_{ m had}^0$	$[\times 10^3 \text{ nb}]$	41 541	37	0.1	4	
$N_{ u}$	$[\times 10^{3}]$	2 996	7	0.005	1	
R_b	$[\times 10^{6}]$	$216 \ 290$	660	0.3	< 60	
$A^{b,0}_{ m FB}$	$[\times 10^{4}]$	992	16	0.02	1-3	
$A_{ m FB}^{ m Pol, au}$	$[\times 10^{4}]$	1498	49	0.15	< 2	stress-test of SM
au lifetime	[fs]	290.3	0.5	0.001	0.04	17 Stress-test of Sivi
au mass	[MeV]	1776.86	0.12	0.004	0.04	∂m _W ~ 0.5 MeV (vs 8 MeV @ LHC)
au leptonic BR	[%]	17.38	0.04	0.0001	0.003	
m_W	[MeV]	80 350	15	0.25	0.3	
Γ_W	[MeV]	2085	42	1.2	0.3	HEP fit
$lpha_S(m_W^2)$	$[\times 10^4]$	$1\ 170$	420	3	small	165
$m_{ m top}$	[MeV]	172 740	500	17	small	
$\Gamma_{ m top}$	[MeV]	1 410	190	45	small	$m_W [{\rm GeV}]$ 80.4

Important task and challenge: matching the systematic and theoretical uncertainties to the statistical power of the FCC-ee

Tadeusz Lesiak

- The FCC project offers a complete, coherent and exciting option for the particle physics for the next decades
- The process of decision about its appoval is gaining momentum in view of the update of European Strategy for Particle Physics
- ✓ FCC-ee studies of electroweak observables, would provide a qualitative leap in precision tests of the Standard Model, thus opening options for pinpointing new phenomena
- An extensive preparatory work is needed in order to fully exploit the expected statistical power of data, by optimising detector' designs and improving theoretical precision of observables