

Looking for the solution to Hierarchy Problem in Top Quark Physics

with Andreas Bally, Florian Goertz, based on 2211.17254 , 2309.00072…

Yi Chung Max-Planck-Institut für Kernphysik, Heidelberg

July 18th, 2024 42nd International Conference on High Energy Physics, Prague

yi.chung@mpi-hd.mpg.de

Taming the Top Yukawa

The Hierarchy Problem

The Naturalness Principle

The Naturalness Principle

Top partner solutions

● The cancellation is guaranteed by Symmetry, ex: SUSY, shift sym. (CHM) ...

Top partner solutions

- The cancellation is guaranteed by Symmetry, ex: SUSY, shift sym. (CHM) ...
- The Higgs mass term is still generated due to the difference between

$$
\delta m_h^2|_{\rm top} + \delta m_h^2|_{\rm top\ partner} \sim -\frac{3}{8\pi^2} y_t^2 M_T^2 \ln\left(\frac{\Lambda^2}{M_T^2}\right)
$$

 \bullet Naturalness principle suggests top partners with masses $M_T \approx 500$ GeV

Problems with Colored top partners

- Absence of colored top partners up to 1.2 TeV
	- \Rightarrow ~10% fine tuning (even worse for large log factor)

Alternative to Colored top partners

⚫ Absence of colored top partners up to 1.2 TeV

 \Rightarrow ~10% fine tuning (even worse for large log factor)

⇒ Colorless top partners

Table borrowed from Chris Verhaaren

Alternative to Top-partner scenarios

Cancellation (take $M_T = 1.2$ TeV) \bullet Reduction (take $\Lambda_t = 1.2$ TeV)

yi.chung@mpi-hd.mpg.de 9/20

Taming the Top Yukawa

Zoom in the Top Yukawa vertex

$$
y_t = y_t(k^2)
$$

Zoom in the Top Yukawa vertex

extended-hypercolor bosons with weak coupling

yi.chung@mpi-hd.mpg.de Taming the Top Yukawa

11/20

Direct searches

⚫ First, we need to select a model

- ⚫ For each theory, there comes different d.o.f. and difficulties
	- (1) **top-philic bosons** with strong coupling : broad resonances with $\Gamma/M \gg 10\%$
	- (2) **bosons and VL fermions** with strong coupling, diverse quantum number and spectrum
	- (3) **extended-hypercolor bosons** with diverse quantum number including hypercolor
	- ⇒ **Searches are challenging, suffering from strong couplings and model-dependence**

Direct test of the idea!

Running of the top Yukawa coupling

Running of the top Yukawa coupling

More Indirect searches

Running of the top quark mass

Nontrivial running m_t at highs scale will affect the $t\bar{t}$ differential cross section

First measurement of top mass at high scales ! (using 2016 Run 2 data)

Running of the top quark mass

Nontrivial running m_t at high scales will affect the $t\bar{t}$ differential cross section

Assuming $m_t(\mu_m) = m_{t, \text{SM}}(\mu_m) \left(\frac{\Lambda_t^2}{\mu_m^2 + \Lambda_t^2} \right)$

we can already put a constraint on Λ_t as

95% CL bound : $\Lambda_t \gtrsim 700$ GeV

Relevant parameter spaces will be tested in **LHC Run 3 and HL-LHC** !

More precise $t\bar{t}$ differential cross section calculation is needed !

Running mass of the heaviest particle !!

Four top quark cross section

- Standard Model prediction: 13.4^{+1.0} fb including *NLL'* (arXiv: 2212.03259)
- ATLAS with 139 fb⁻¹ : 22.5^{+6.6} fb
- CMS with 138 fb^{-1} : 17.7^{+4.4} fb
	- $\rightarrow \sigma_{t\bar{t}t\bar{t}}$ < 36 (27) fb at 95% C.L.

Four-top could be the first hint !?

[F. Maltoni](https://arxiv.org/abs/2104.09512) et al [2104.09512](https://arxiv.org/abs/2104.09512) \implies the old analysis based on xs of $12.6^{+5.8}_{-5.2}$ fb

yi.chung@mpi-hd.mpg.de Taming the Top Yukawa

19/20

Summary

- \triangleright Top quarks play the most important role in the Hierarchy Problem
- ⚫ Traditionally, top partners are introduced to **cancel** the top-loop contribution
- \bullet Alternative: **modify the running** of y_t to lower down the top-loop contribution
- What should show up at $\Lambda_t \approx 500$ GeV : **Top partner** \rightarrow **New top-philic d.o.f.**
- \triangleright Phenomenology of the alternative scenario
- Hard to perform direct searches due to strong couplings and requirements of UV models
- ⚫ Common phenomenology of modified top Yukawa coupling
	- $-$ Top Yukawa at high scales : $\boldsymbol{t}\bar{\boldsymbol{t}}\boldsymbol{h}$ differential cross section
	- $-$ Top mass at high scales : $t\bar{t}$ differential cross section
	- $-$ Top-philic new interactions : $t\bar{t}t\bar{t}$ cross section

Solutions to Hierarchy Problem might still be hidden in Top Physics !!

Back up

Direct searches $-$ top-philic Z' boson

Only couple to t_R (in linear case)

- Couple to $q_L = (t_L, b_L)$ (in bilinear case)
- <u>[2304.01678](https://arxiv.org/abs/2304.01678)</u> Process: $b_L\overline{b}_L \rightarrow Z' \rightarrow b_L\overline{b}_L$ [1910.08447](https://arxiv.org/abs/1910.08447)

yi.chung@mpi-hd.mpg.de

3G Naturalness

Naturalness and the Higgs potential

⚫ The Higgs potential is generated mainly from the top loop and gauge loop given by

yi.chung@mpi-hd.mpg.de 3G Naturalness

[2311.17169](https://arxiv.org/abs/2311.17169)

Large y_t running

[2211.17254](https://arxiv.org/abs/2211.17254)

Strongly interacting top-philic boson

Ex: Heavy gluons (Coloron)

with the $SU(3)$ coupling $g'_3 \sim 4.5$

Direct consequences:

- Bound state of top-anti-top with the mass around $M = 2.5$ TeV
-

Radiative \boldsymbol{y}_{t} generation

[2211.17254](https://arxiv.org/abs/2211.17254)

Top Yukawa arise from Dim-six operator

Minimal setup: EW doublet scalar S_L EW singlet scalar S_R EW singlet fermion F

⚫ The diagram introduces a dim-6 operator

from strong dynamics!!

Simplified Scalar Model

● At least three vertices are required

or written in Lagrangian

$$
\mathcal{L}_{\text{int}} = -VS_R S_L^{\dagger} H - y_L \bar{q}_L S_L F_R - y_R \bar{t}_R S_R F_L + \text{h.c.} ,
$$

where S_L is a doublet, S_R is a singlet, and F is a singlet vector-like fermion.

● Mass terms are also required

$$
\mathcal{L}_{\rm mass} = -M_L^2 |S_L|^2 - M_R^2 |S_R|^2 - M_F \bar{F}_L F_R + \text{h.c.}.
$$

Simplified Scalar Model

⚫ Focus on the neutral scalar components

$$
\mathcal{L}_{\text{neutral}} = |\partial s_L|^2 + |\partial s_R|^2 - M_L^2 |s_L|^2 - M_R^2 |s_R|^2 - V \langle H \rangle (s_L^* s_R + s_R^* s_L)
$$

= $|\partial s_h|^2 + |\partial s_\ell|^2 - M_s^2 |s_h|^2 - m_s^2 |s_\ell|^2$

where the mass eigenstates are given by

$$
\begin{pmatrix} s_L \\ s_R \end{pmatrix} = \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} s_{\text{heavy}} \\ s_{\text{light}} \end{pmatrix} = \begin{pmatrix} c_\beta & -s_\beta \\ s_\beta & c_\beta \end{pmatrix} \begin{pmatrix} s_h \\ s_\ell \end{pmatrix}
$$

⚫ The interaction terms also become

$$
\mathcal{L}_{\text{trilinear}} = -\sqrt{2}\,V c_\beta s_\beta\, h|s_h|^2 + \sqrt{2}\,V c_\beta s_\beta\, h|s_\ell|^2 \t- \frac{V(c_\beta^2-s_\beta^2)}{\sqrt{2}}\, h s_h^* s_\ell + \text{h.c.}
$$

 $\mathcal{L}_{\text{fermion}} = - (y_L c_\beta \bar{t}_L s_h F_R + y_R s_\beta \bar{t}_R s_h F_L) - (-y_L s_\beta \bar{t}_L s_\ell F_R + y_R c_\beta \bar{t}_R s_\ell F_L) + \text{h.c.}$

Generate the Top Yukawa coupling

⚫ The original one-loop diagram is decomposed to the four diagrams below

Diverse phenomenology

- Phenomenology are determined by the lightest scalar s_{ℓ} and vector-like fermion F
- ⚫ The quantum number and the spectrum of the new d.o.f. are not determined
- ⚫ They can have diverse **"Quantum number"** and **"Spectrum"**

 Warning: they might be broad resonances which are not under current search strategy.

31/20

Top Yukawa from low scale to high scale

 $M_F \sim 1550 \text{ GeV}, m_s \sim 600 \text{ GeV}, M_s \sim 1400 \text{ GeV}$ (BM1, blue) $M_F \sim 850 \text{ GeV}, m_s \sim 450 \text{ GeV}, M_s \sim 1300 \text{ GeV}$ (BM2, green)

Two benchmarks are calculated and compared with SM running (red)

Top Yukawa from low scale to high scale

 $M_F \sim 1550 \text{ GeV}, m_s \sim 600 \text{ GeV}, M_s \sim 1400 \text{ GeV}$ (BM1, blue) $M_F \sim 850 \text{ GeV}, m_s \sim 450 \text{ GeV}, M_s \sim 1300 \text{ GeV}$ (BM2, green)

Two benchmarks are calculated and compared with SM running (red)

- The value of y_t is normalized according to the correct top mass
- Larger y_t due to additional diagrams with extra Higgs insertion, which lead to

 $\mathcal{L}_{\text{top}} = c_6 \left(\bar{q}_L H t_R \right) + c_{6+4n} \left(H^{\dagger} H \right)^n \left(\bar{q}_L H t_R \right)$

⚫ Main Constraint: top Yukawa measurement

$$
\kappa_t \equiv \frac{y_t}{y_t^{\rm SM}} = 1 + \mathcal{O}\left(\frac{V^2 v^2}{M^4}\right)
$$

with current bound $0.7 < \kappa_t < 1.1$ at 95% CL (likely be weaker considering off-shell effect)

Running of the top quark mass

⚫ The top quark mass is generated through

• The top quark mass m_t is radiatively generated in the intermediate scale \rightarrow Nontrivial running m_t at the high scale which will affect the $t\bar{t}$ cross section

Additional contribution

⚫ The trilinear couplings between the Higgs and scalars will introduce a new loop

- ➢ This loop is however logarithmically sensitive to NP and will not reintroduce a HP
- \triangleright Assuming a low-scale UV completion, the correction leads to 7% tuning in both benchmarks, which is at the same order as the top-quark tuning. Therefore, the new scalar loops do not worsen the tuning.

Top Yukawa from strong dynamics

- \bullet If y_t comes from pure strong dynamics, then even at one-loop level we expect $y_t \sim 4\pi$
- A suppression $\boldsymbol{\varepsilon}$ is required between the strong and weak sector to get $y_t \sim 1$
- ⚫ Three possibilities

small M without large κ_t

Strongly coupled UV theory

A Top seesaw-like model based on $SU(3)_L \times SU(2)_R$ global symmetry with bound states

$$
\begin{array}{|c|c|} \hline\n\text{Weak sector:} \\
H, Q_L = \begin{pmatrix} F_L \\ t_L \\ b_L \end{pmatrix}, & Q_R = \begin{pmatrix} F_R \\ t_R \end{pmatrix} \\
\hline\n\text{Strong sector:} \\
\Phi, Q'_L = \begin{pmatrix} F'_L \\ t'_L \\ b'_L \end{pmatrix}, & Q'_R = \begin{pmatrix} F'_R \\ t'_R \end{pmatrix} \\
\Phi = \bar{Q}'_R Q'_L = \begin{pmatrix} S_V^* & S_R^* \\ S_L & S_H \end{pmatrix} \\
\hline\n\text{H} & \begin{pmatrix} F_L \\ t'_R \\ b'_L \end{pmatrix} \\
\Phi = \bar{Q}'_R Q'_L = \begin{pmatrix} S_V^* & S_R^* \\ S_L & S_H \end{pmatrix}\n\end{array}
$$

yi.chung@mpi-hd.mpg.de Taming the Top Yukawa

37/20

 q_L

 \bar{F}_R

 F_L

\boldsymbol{y}_{t} from four-fermion interaction

[2309.00072](https://arxiv.org/abs/2309.00072)

Fundamental Composite Higgs Models

⚫ Chiral symmetry breaking

$$
SU(2)_L \times SU(2)_R \rightarrow SU(2)_V
$$

which gives three massless NG bosons, *i.e.* pions!!

 $\begin{aligned} p,n,\ldots &\sim 1~{\rm GeV} \\ \Bigg\downarrow \qquad m_\pi \sim 140~{\rm MeV} \end{aligned}$ However, the symmetry is broken by quark masses and EM interactions, and we get massive pions. **Quark with QCD**

(Some global) symmetry breaking with a scale $f_{HC} \sim 1 \text{ TeV}$

 $\mathcal{G} \to \mathcal{H} \ni SU(2)_L \times U(1)_Y$

which gives (at least) four NG bosons as **Higgs doublet!!**

The symmetry can be broken by different interactions (usually by electroweak interaction and Yukawa interaction) and give us the nontrivial Higgs potential.

Fundamental Composite Higgs Models

\boldsymbol{y}_{t} from four-fermion - bilinear

Composite Higgs with **Extended Hypercolor** $M_{EHC} = g_{EHC}f_{EHC}$ f_{EHC} : the scale of EHC

⚫ Top Yukawa in CHM can originate from connecting the strong sector to a SM bilinear

$$
\mathcal{L}_{\rm EHC} = g_{EHC} G_{EHC}^{\mu} (\bar{q}_L \gamma_{\mu} \psi_L + \bar{\psi}_R \gamma_{\mu} t_R) \rightarrow \mathcal{L}_{\rm eff} \supset \frac{g_{EHC}^2}{M_{EHC}^2} (\bar{\psi}_R \psi_L) (\bar{q}_L t_R)
$$

Naive dimensional analysis in CHM gives $\bar{\psi}_R \psi_L \sim (4 \pi f_{HC}^2) H$ and thus

$$
y_t \sim \frac{g_{EHC}^2}{M_{EHC}^2} \cdot 4\pi f_{HC}^2 \sim 4\pi \left(\frac{f_{HC}}{f_{EHC}}\right)^2 \sim 1 \implies f_{EHC} \sim 3.5 \times f_{HC} \gtrsim 3 \text{ TeV}
$$

The cutoff of top loop is determined by $M_{EHC} = g_{EHC} f_{EHC}$, which requires weak g_{EHC}

Extend the gauge group in new direction

- ⚫ To have a light EHC boson, we need it to be hypercolorless which require new approach.
- \triangleright Traditional approach $\mathcal{G}_{HC} \times \mathcal{G}_{SM} \subset \mathcal{G}_E$ $|E_{\mu} = (N, \bar{3}, 1)|$ $SU(N+3)_E \rightarrow SU(N)_{HC} \times SU(3)_C$ $Q_L = (N+3, 2)$
 $Q_R = (N+3, 1)$ \rightarrow $\psi_L = (N, 1, 2),$ $q_L = (1, 3, 2)$
 $\psi_R = (N, 1, 1),$ $t_R = (1, 3, 1)$
 hypercolorless $E_{\mu} = (1, \bar{3}, 1)$ \triangleright New approach $\;\mathcal{G}_{HC} \times (\mathcal{G}_{HF} \times \mathcal{G}_{SM} \subset \mathcal{G}_{E})$ $SU(3)_{HC} \times SU(4)_{EC} \rightarrow SU(3)_{HC} \times SU(3)_{EC} \rightarrow SU(3)_{C}$ $Q_L = (3, 4, 2) \rightarrow (3, 3, 2) + (3, 1, 2) \rightarrow (6, 2) + (\overline{3}, 2) + (3, 2)$ $Q_R = (3,4,1) \rightarrow (3,3,1) + (3,1,1) \rightarrow (6,1) + (\overline{3},1) + (3,1)$

A concrete model

Gauge group

$$
\mathcal{G}_E = SU(3)_{HC} \times SU(4)_{EC} \times SU(2)_W \times U(1)_X
$$

$$
g_H \qquad g_E \sim g_s \qquad \qquad g_X \sim g_Y
$$

⚫ Fermion content

$$
Q_L = (3, 4, 2, 1/24), \quad Q_R = (3, 4, 1, 13/24)
$$

- ⚫ Several steps are required
- A. The $\mathcal{G}_E \rightarrow \mathcal{G}_{SM}$ breaking at the scale $f_E \sim 1.7$ TeV
- B. Composite Higgs formation at the scale $f \sim 1$ TeV
- C. Generation of top Yukawa coupling at the scale M_E

Step A: Tumbling with exotic fermions

To realize the first breaking dynamically, we need exotic fermions as sextet under $SU(3)_{HC}$

$$
Q_L = (3, 4, 2, 1/24) , \quad F_R = (6, 1, 2, 0)
$$

 \bullet The most attractive channel under $SU(3)_{HC}$ is RH 6 combined with some of LH 3

$$
\bar{F}_R Q_L = \bar{\mathbf{6}} \,\mathbf{3} = (\bar{3}, 4, 1, 1/24) = \frac{f_E}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

which will break $\mathcal{G}_E \to \mathcal{G}_{SM}$. The fermion content then deconstruct to

$$
Q_L \to f_L = (6, 2)_0, \ \psi_L = (\bar{3}, 2)_0, \ q_L = (3, 2)_{\frac{1}{6}}
$$

$$
Q_R \to f_R = (6, 1)_{\frac{1}{2}}, \ \psi_R = (\bar{3}, 1)_{\frac{1}{2}}, \ t_R = (3, 1)_{\frac{2}{3}}
$$

The exotics F will mix with f of Q forming a massive Dirac color sextet fermion

Step B: CHM by broken hypercolor

After the first breaking, the $SU(3)_{HC}$ is broken and there is no further condensate.

$$
g_c = \sqrt{8\pi^2/3} \sim 5.1 \;\; \text{is critical coupling derived from NJL}
$$

However, there is another $SU(3)_{EC}$ which allows tilting mechanism to happen

$$
g^2_{\psi} \sim g^2_{H} + g^2_{E} > g^2_{c} , \quad g^2_{t} \sim g^2_{H} < g^2_{c}
$$

⚫ For a realistic CHM, additional hyperfermion is required with

$$
\Psi_1 = (\bar{3}, 2)_0, \ \Psi_2 = (\bar{3}, 1)_{\frac{1}{2}}, \ \Psi_3 = (\bar{3}, 1)_{-\frac{1}{2}}
$$

which results in a $SU(4) \times SU(4)$ / $SU(4)$ FCHM with 15 pNGBs including Higgs

Step C: Top Yukawa from the E_{μ} boson

In this model, we can then generate the top Yukawa coupling with a value given by

$$
y_t \sim \frac{1}{v} \frac{g_E^2}{M_E^2} \langle \bar{\psi_R} \psi_L \rangle_{HC} \sim \left(\frac{f}{f_E}\right)^2 Y_S \quad \text{,where} \quad Y_S \sim \frac{4\pi}{\sqrt{N_{HC} \, \ln(\Lambda^2/M_\psi^2)}}
$$

Taking $Y_s = 3$, we get the relation among the scale for the observed top Yukawa as $f_E \sim \sqrt{Y_S \times f} \sim 1.7 \times f$

PS It is derived from bottom-up and will be more attractive if one get derive from top down.

 \bullet With $g_E \sim g_s \sim 1$ and $f_E \sim 1.7$ TeV, the mass of E_μ boson is given by

$$
M_E = \frac{1}{2} g_E f_E \sim 0.9 \text{ TeV}
$$
 The desired light cutoff!!

Breaking pattern

$$
SU(3)_{HC} \times SU(4)_{EC} \times SU(2)_W \times U(1)_X
$$

$$
\oint \overline{F}_R Q_L = \overline{\mathbf{6}} \mathbf{3} \text{ condensate with } f_E \sim 1.7 \text{ TeV}
$$

\n
$$
SU(3)_C \times SU(2)_W \times U(1)_Y + \text{massive } G', E_\mu, Z', \text{ fermion sextet } F
$$

\n
$$
\oint \overline{\psi}_R \psi_L = \overline{\mathbf{3}} \mathbf{3} \text{ condensate with } f \sim 1 \text{ TeV}
$$

\n
$$
SU(3)_C \times SU(2)_W \times U(1)_Y + \text{composite Higgs}
$$

\n
$$
\oint \text{integrating out } E_\mu \text{ with } M_E \sim 0.9 \text{ TeV}
$$

\n
$$
SU(3)_C \times SU(2)_W \times U(1)_Y + \text{composite Higgs } + \text{``Top Yukawa''}
$$

The overall spectrum

$$
M_{G'} = \frac{1}{\sqrt{2}} \sqrt{g_H^2 + g_E^2} f_E \sim 6 \text{ TeV} \qquad \text{Coloron}
$$
\n
$$
M_F \sim Y_s f_E \sim 5 \text{ TeV} \qquad \text{Sextet fermion} \qquad \text{Particles}
$$
\n
$$
M_{\psi} \sim Y_s f \sim 3 \text{ TeV} \qquad \text{Triplet fermion} \qquad \text{Q few TeV}
$$

$$
M_{Z'} = \frac{1}{2} g_E f_E \sim 0.9 \text{ TeV}
$$

$$
M_{Z'} = \frac{1}{\sqrt{8}} \sqrt{c^2 g_X^2 + g_E^2} f_E \sim 0.6 \text{ TeV}
$$

Z' boson
Z' boson
Q sub TeV
Q sub TeV

48/20