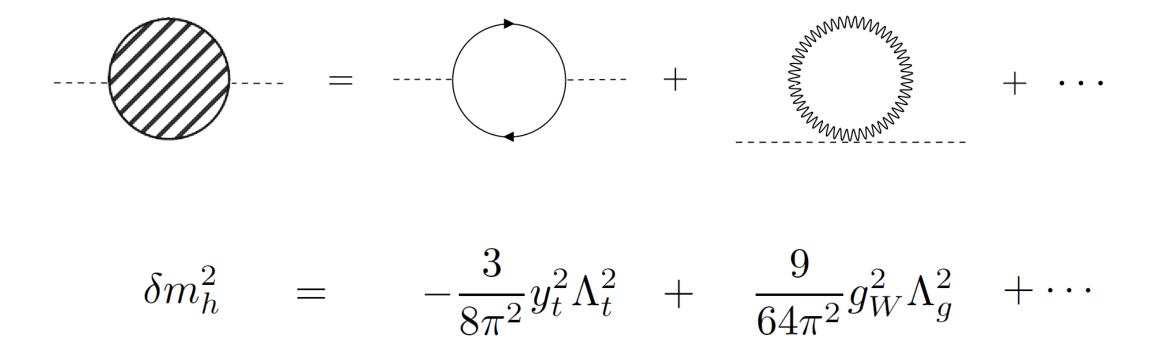


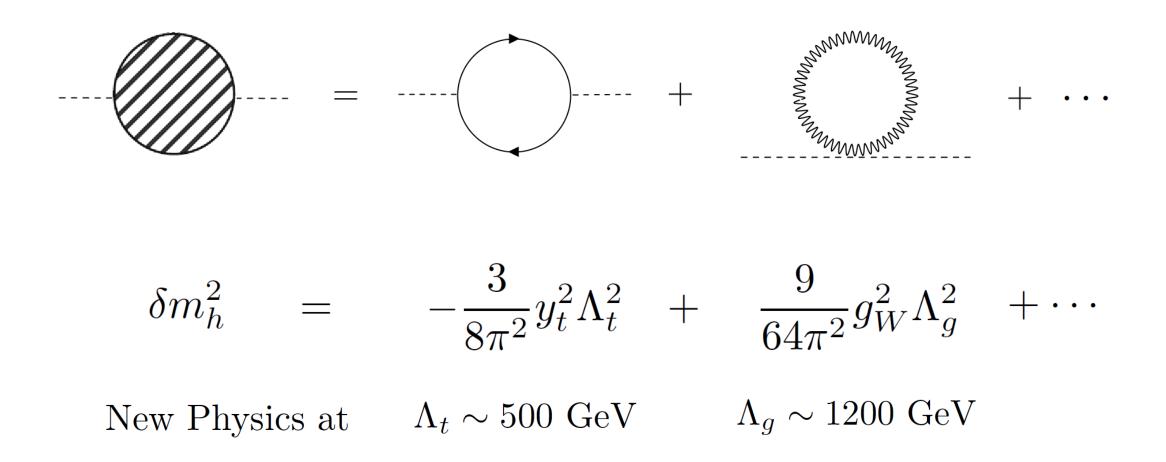
Looking for the solution to Hierarchy Problem in Top Quark Physics

with Andreas Bally, Florian Goertz, based on 2211.17254, 2309.00072...


Yi Chung Max-Planck-Institut für Kernphysik, Heidelberg

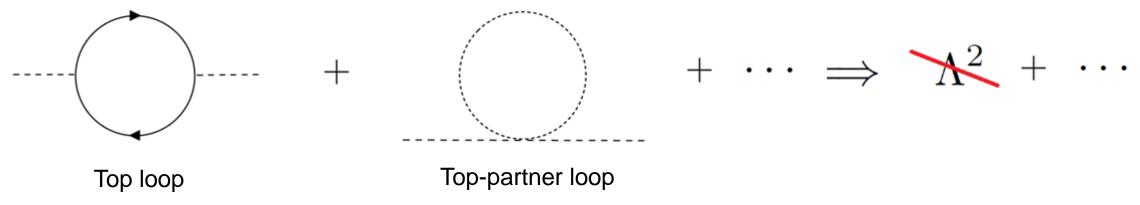
July 18th, 2024 42nd International Conference on High Energy Physics, Prague

yi.chung@mpi-hd.mpg.de


The Hierarchy Problem

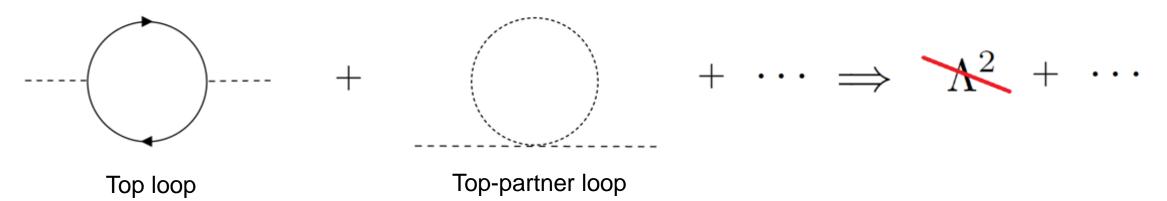
yi.chung@mpi-hd.mpg.de

The Naturalness Principle



The Naturalness Principle

yi.chung@mpi-hd.mpg.de


Top partner solutions

• The cancellation is guaranteed by Symmetry, ex: SUSY, shift sym. (CHM) ...

Top partner solutions

- The cancellation is guaranteed by Symmetry, ex: SUSY, shift sym. (CHM) ...
- The Higgs mass term is still generated due to the difference between

$$\delta m_h^2|_{\rm top} + \delta m_h^2|_{\rm top \ partner} \sim -\frac{3}{8\pi^2} y_t^2 M_T^2 \ln\left(\frac{\Lambda^2}{M_T^2}\right)$$

• Naturalness principle suggests top partners with masses $M_T \approx 500 \text{ GeV}$

Problems with Colored top partners

• Absence of colored top partners up to 1.2 TeV

 $\Rightarrow \sim 10\%$ fine tuning (even worse for large log factor)

Quantum #	Scalar	Fermion	
QCD x EW	SUSY	CHM / RS	\Rightarrow Colored top partners

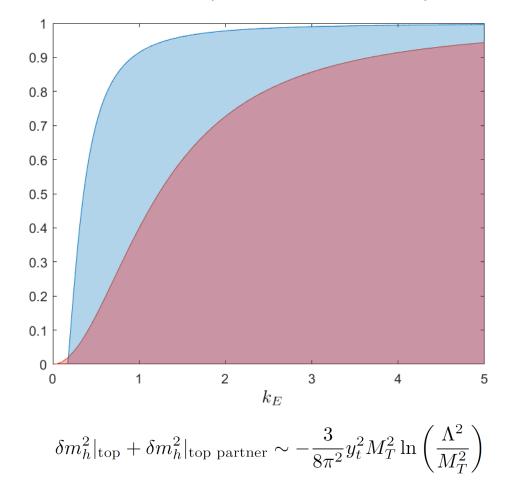
Alternative to Colored top partners

• Absence of colored top partners up to 1.2 TeV

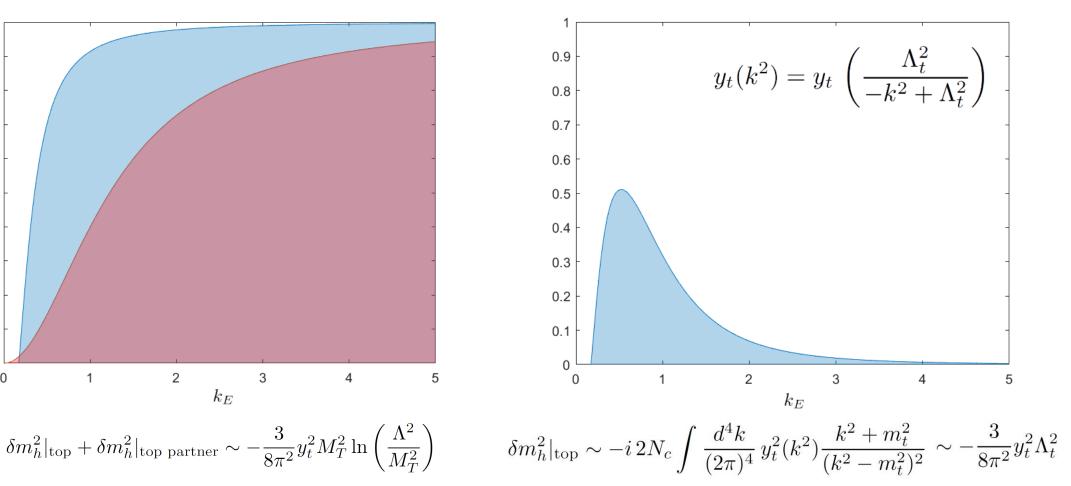
 $\Rightarrow \sim 10\%$ fine tuning (even worse for large log factor)

Quantum #	Scalar	Fermion	
QCD x EW	SUSY	CHM / RS	
Neutral x EW	Folded SUSY	Quirky Little Higgs	
Neutral x Neutral	Tripled Top Hyperbolic Higgs	Twin Higgs	

 \Rightarrow Colorless top partners

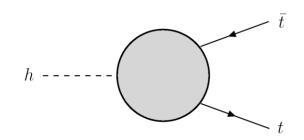

Table borrowed from Chris Verhaaren

yi.chung@mpi-hd.mpg.de



Alternative to Top-partner scenarios

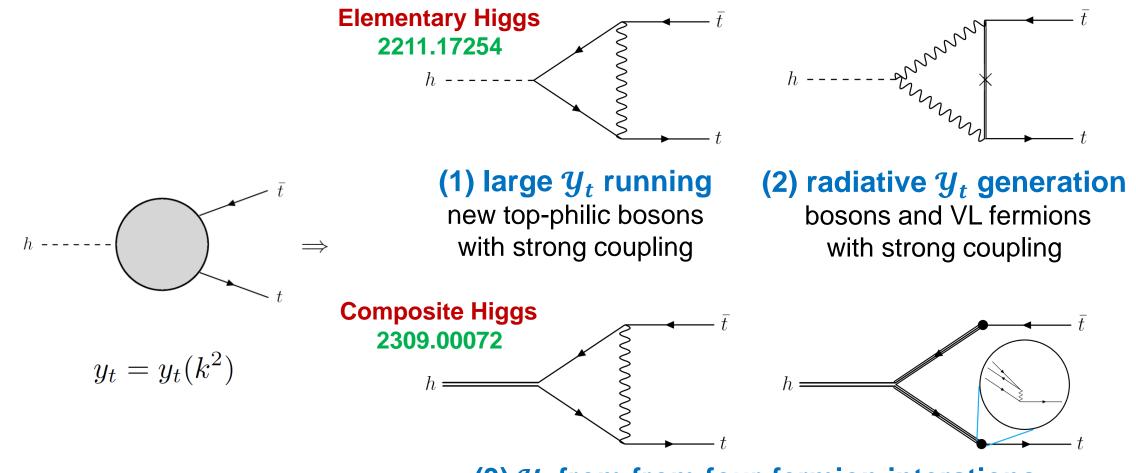
Cancellation (take $M_T = 1.2 \text{ TeV}$)



• Reduction (take $\Lambda_t = 1.2 \text{ TeV}$)

yi.chung@mpi-hd.mpg.de

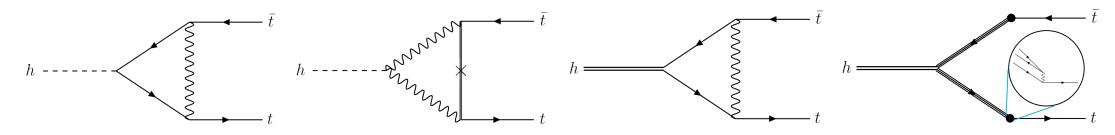
Zoom in the Top Yukawa vertex



$$y_t = y_t(k^2)$$

yi.chung@mpi-hd.mpg.de

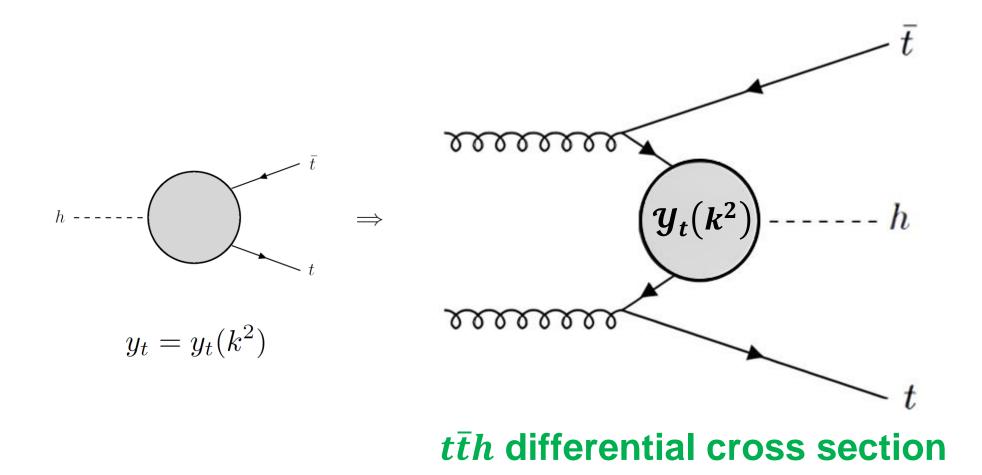
Zoom in the Top Yukawa vertex


(3) \mathcal{Y}_t from from four-fermion interations extended-hypercolor bosons with weak coupling

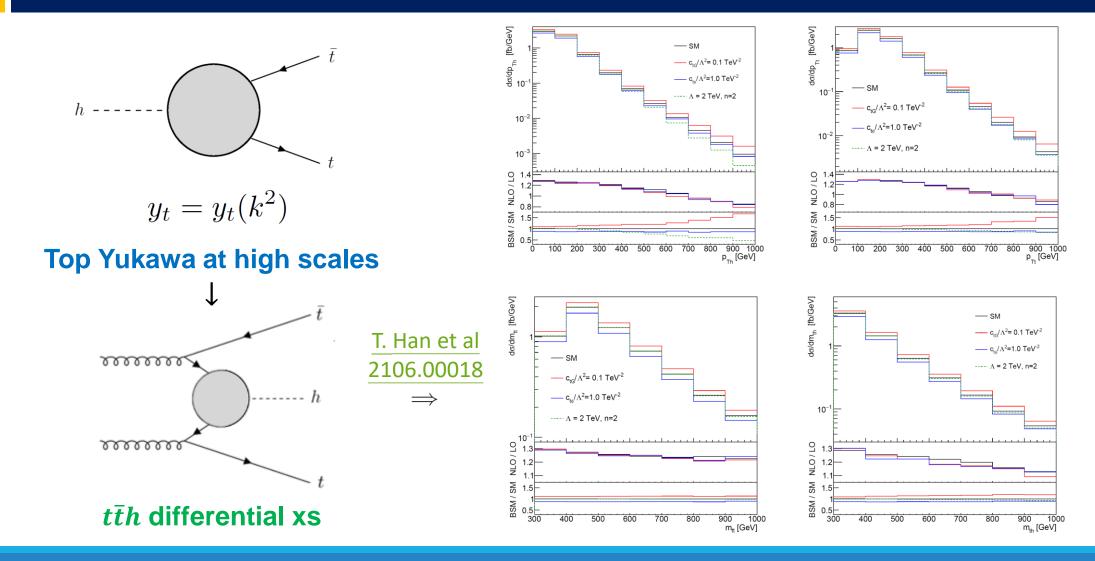
11/20

yi.chung@mpi-hd.mpg.de

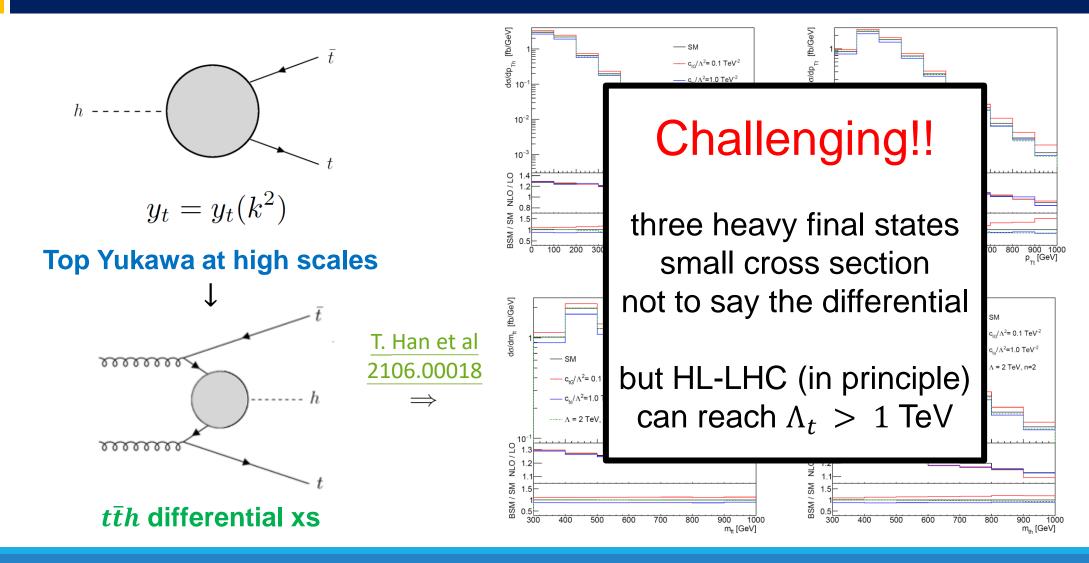
Direct searches


• First, we need to select a model

- For each theory, there comes different d.o.f. and difficulties
 - (1) **top-philic bosons** with strong coupling : broad resonances with $\Gamma/M \gg 10\%$
 - (2) **bosons and VL fermions** with strong coupling, diverse quantum number and spectrum
 - (3) extended-hypercolor bosons with diverse quantum number including hypercolor
 - ⇒ Searches are challenging, suffering from strong couplings and model-dependence

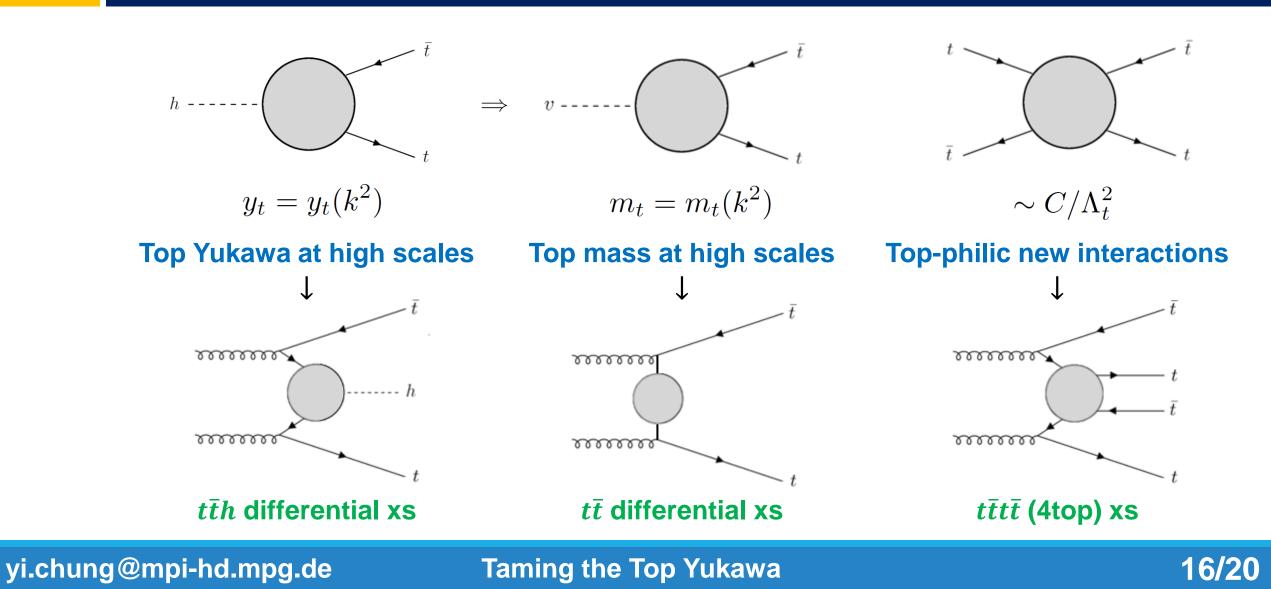

Direct test of the idea!

yi.chung@mpi-hd.mpg.de

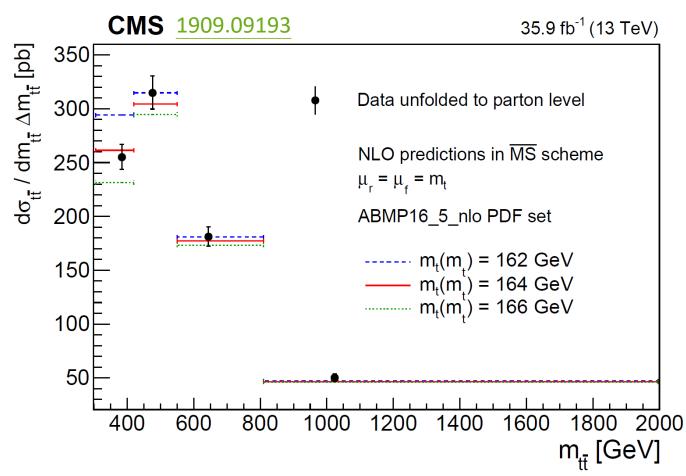


Running of the top Yukawa coupling

yi.chung@mpi-hd.mpg.de


Running of the top Yukawa coupling

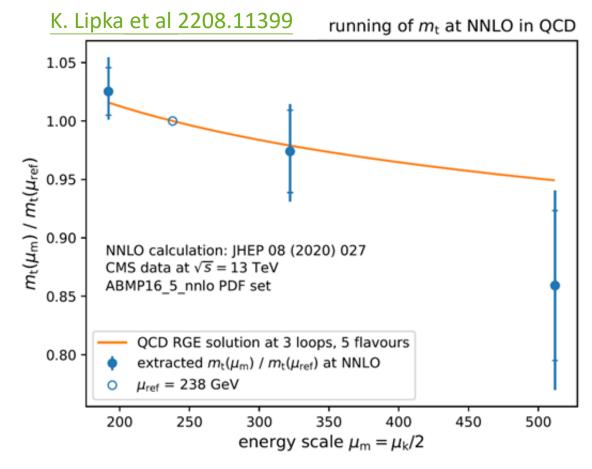
yi.chung@mpi-hd.mpg.de



More Indirect searches

Running of the top quark mass

• Nontrivial running m_t at highs scale will affect the $t\bar{t}$ differential cross section


First measurement of top mass at high scales ! (using 2016 Run 2 data)

yi.chung@mpi-hd.mpg.de

Running of the top quark mass

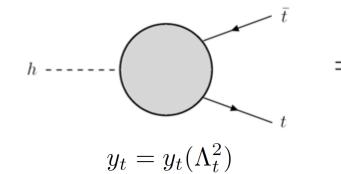
• Nontrivial running m_t at high scales will affect the $t\bar{t}$ differential cross section

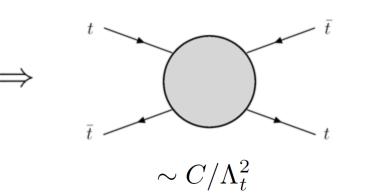
Assuming $m_t(\mu_m) = m_{t,SM}(\mu_m) \left(\frac{\Lambda_t^2}{\mu_m^2 + \Lambda_t^2}\right)$

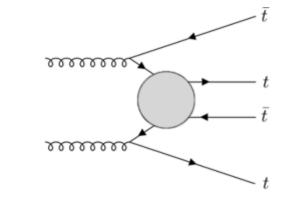
we can already put a constraint on Λ_t as

95% CL bound : $\Lambda_t \gtrsim 700 \text{ GeV}$

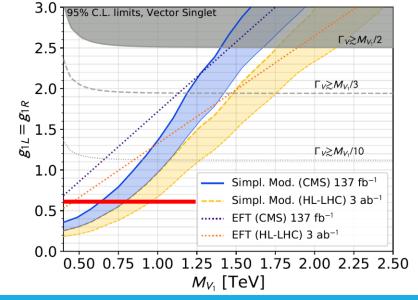
Relevant parameter spaces will be tested in LHC Run 3 and HL-LHC !


More precise $t\bar{t}$ differential cross section calculation is needed !


Running mass of the heaviest particle !!


yi.chung@mpi-hd.mpg.de

Four top quark cross section



- Standard Model prediction: 13.4^{+1.0}_{-1.8} fb including *NLL*' (arXiv: 2212.03259)
- ATLAS with 139 fb^{-1} : 22.5^{+6.6}_{-5.6} fb
- CMS with 138 fb^{-1} : 17.7^{+4.4}_{-4.0} fb
 - $\rightarrow \sigma_{t\bar{t}t\bar{t}}$ < 36 (27) fb at 95% C.L.

Four-top could be the first hint !?

 $\begin{array}{c} \mbox{F. Maltoni et al} \\ \mbox{2104.09512} \\ \mbox{3} \end{array} \\ \mbox{the old analysis} \\ \mbox{based on xs of} \\ \mbox{12.6}^{+5.8}_{-5.2} \mbox{ fb} \end{array}$

yi.chung@mpi-hd.mpg.de

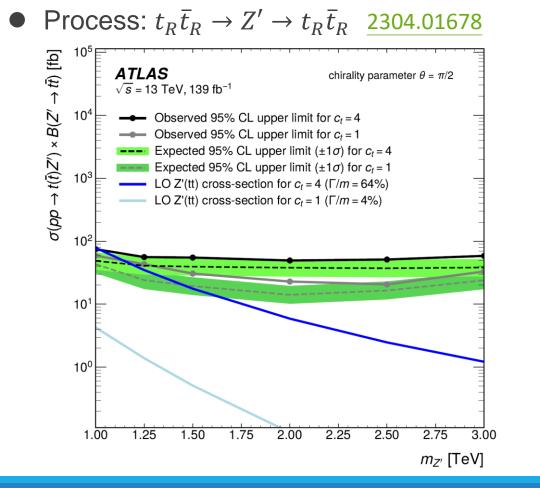
Taming the Top Yukawa

19/20

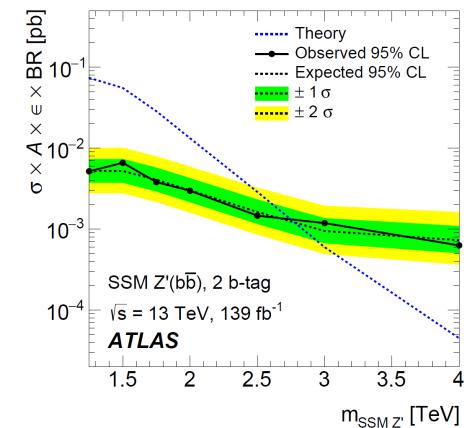
Summary

- > Top quarks play the most important role in the Hierarchy Problem
- Traditionally, top partners are introduced to **cancel** the top-loop contribution
- Alternative: modify the running of y_t to lower down the top-loop contribution
- What should show up at $\Lambda_t \approx 500 \text{ GeV}$: **Top partner** \rightarrow **New top-philic d.o.f.**
- Phenomenology of the alternative scenario
- Hard to perform direct searches due to strong couplings and requirements of UV models
- Common phenomenology of modified top Yukawa coupling
 - Top Yukawa at high scales : $t\bar{t}h$ differential cross section
 - Top mass at high scales : $t\bar{t}$ differential cross section
 - Top-philic new interactions : $t\bar{t}t\bar{t}$ cross section

Solutions to Hierarchy Problem might still be hidden in Top Physics !!


Back up

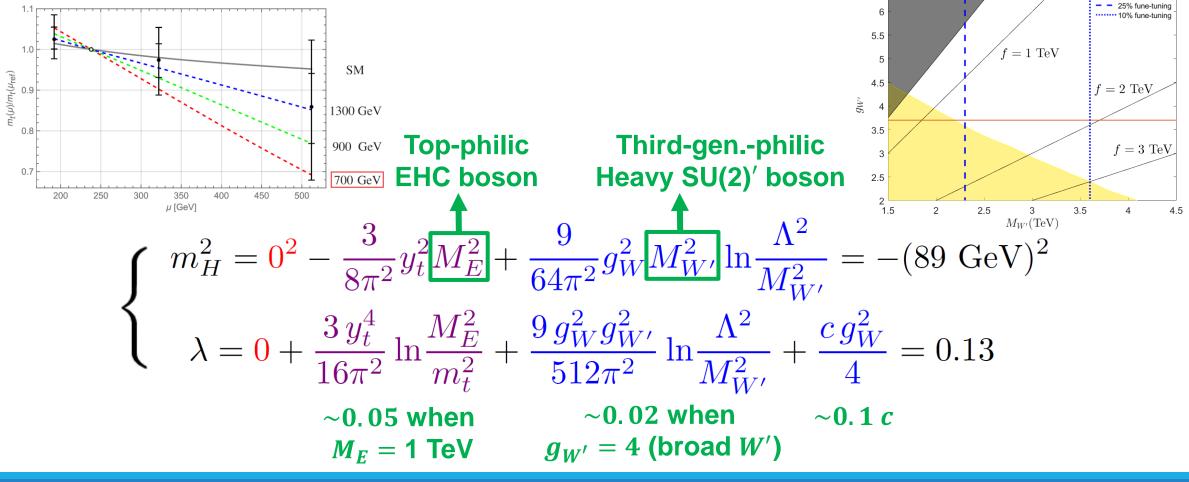
yi.chung@mpi-hd.mpg.de



Direct searches – top-philic Z' boson

• Only couple to t_R (in linear case)

- Couple to $q_L = (t_L, b_L)$ (in bilinear case)
- Process: $b_L \overline{b}_L \rightarrow Z' \rightarrow b_L \overline{b}_L$ <u>1910.08447</u>



yi.chung@mpi-hd.mpg.de

3G Naturalness

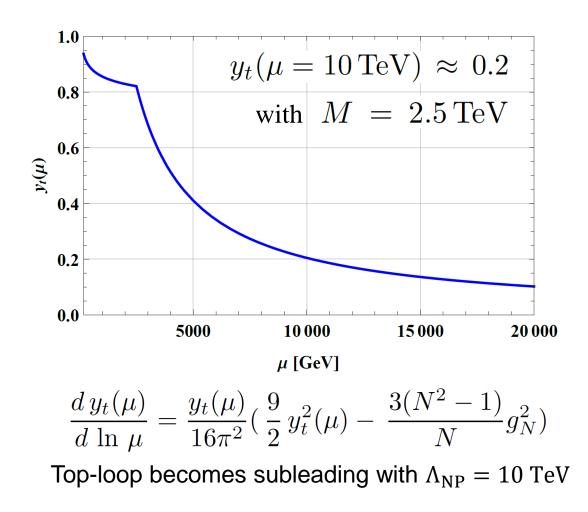
Naturalness and the Higgs potential

• The Higgs potential is generated mainly from the top loop and gauge loop given by

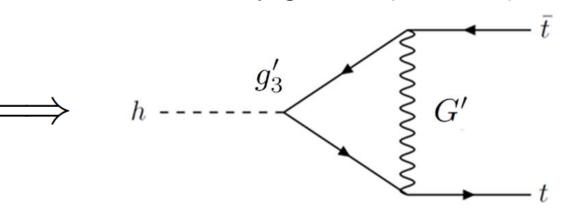
yi.chung@mpi-hd.mpg.de

3G Naturalness

2311.17169


Large \mathcal{Y}_t running

2211.17254


yi.chung@mpi-hd.mpg.de

Strongly interacting top-philic boson

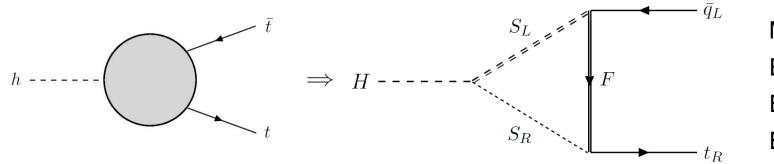
Ex: Heavy gluons (Coloron)

with the SU(3) coupling $g'_3 \sim 4.5$

Direct consequences:

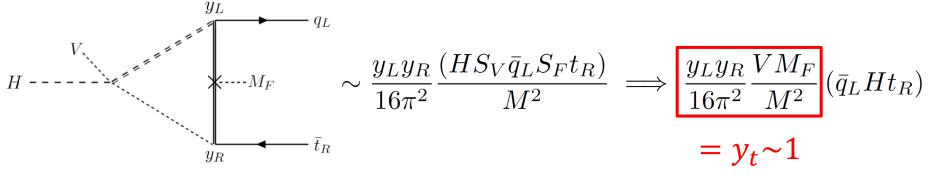
- Bound state of top-anti-top with the mass around M = 2.5 TeV
- Enhancement in 4t cross section!!

yi.chung@mpi-hd.mpg.de


Radiative y_t generation

2211.17254

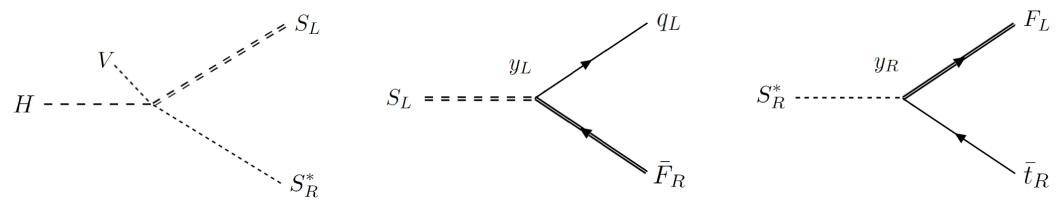
yi.chung@mpi-hd.mpg.de



Top Yukawa arise from Dim-six operator

Minimal setup: EW doublet scalar S_L EW singlet scalar S_R EW singlet fermion F

• The diagram introduces a dim-6 operator


from strong dynamics!!

yi.chung@mpi-hd.mpg.de

Simplified Scalar Model

• At least three vertices are required

or written in Lagrangian

$$\mathcal{L}_{\text{int}} = -VS_R S_L^{\dagger} H - y_L \bar{q}_L S_L F_R - y_R \bar{t}_R S_R F_L + \text{h.c.} ,$$

where S_L is a doublet, S_R is a singlet, and F is a singlet vector-like fermion.

• Mass terms are also required

$$\mathcal{L}_{\text{mass}} = -M_L^2 |S_L|^2 - M_R^2 |S_R|^2 - M_F \bar{F}_L F_R + \text{h.c.} .$$

Simplified Scalar Model

• Focus on the neutral scalar components

$$\mathcal{L}_{\text{neutral}} = |\partial s_L|^2 + |\partial s_R|^2 - M_L^2 |s_L|^2 - M_R^2 |s_R|^2 - V \langle H \rangle (s_L^* s_R + s_R^* s_L)$$

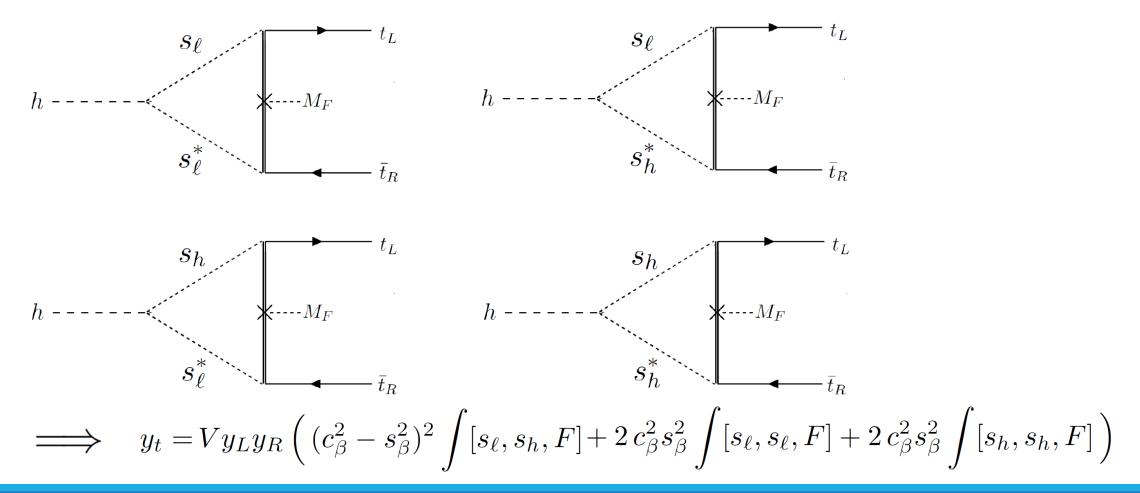
= $|\partial s_h|^2 + |\partial s_\ell|^2 - M_s^2 |s_h|^2 - m_s^2 |s_\ell|^2$

where the mass eigenstates are given by

$$\begin{pmatrix} s_L \\ s_R \end{pmatrix} = \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} s_{\text{heavy}} \\ s_{\text{light}} \end{pmatrix} = \begin{pmatrix} c_\beta & -s_\beta \\ s_\beta & c_\beta \end{pmatrix} \begin{pmatrix} s_h \\ s_\ell \end{pmatrix}$$

• The interaction terms also become

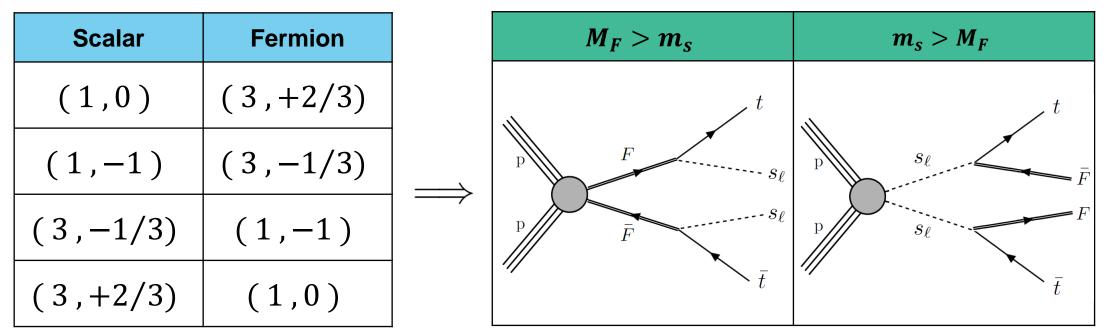
$$\mathcal{L}_{\text{trilinear}} = -\sqrt{2} V c_{\beta} s_{\beta} h |s_h|^2 + \sqrt{2} V c_{\beta} s_{\beta} h |s_\ell|^2 - \frac{V(c_{\beta}^2 - s_{\beta}^2)}{\sqrt{2}} h s_h^* s_\ell + \text{h.c.}$$


 $\mathcal{L}_{\text{fermion}} = -\left(y_L c_\beta \,\bar{t}_L s_h F_R + y_R s_\beta \,\bar{t}_R s_h F_L\right) - \left(-y_L s_\beta \,\bar{t}_L s_\ell F_R + y_R c_\beta \,\bar{t}_R s_\ell F_L\right) + \text{h.c.}$

yi.chung@mpi-hd.mpg.de

Generate the Top Yukawa coupling

• The original one-loop diagram is decomposed to the four diagrams below

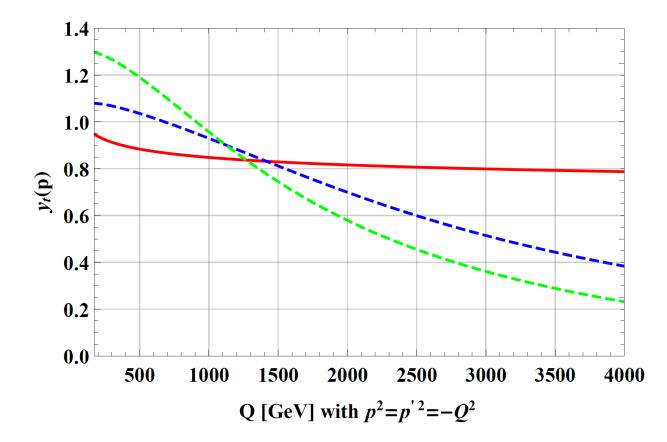


30/20

yi.chung@mpi-hd.mpg.de

Diverse phenomenology

- Phenomenology are determined by the lightest scalar s_{ℓ} and vector-like fermion F
- The quantum number and the spectrum of the new d.o.f. are not determined
- They can have diverse "Quantum number" and "Spectrum"


Warning: they might be broad resonances which are not under current search strategy.

yi.chung@mpi-hd.mpg.de

Top Yukawa from low scale to high scale

 $M_F \sim 1550 \text{ GeV}, m_s \sim 600 \text{ GeV}, M_s \sim 1400 \text{ GeV} (BM1, blue)$ $M_F \sim 850 \text{ GeV}, m_s \sim 450 \text{ GeV}, M_s \sim 1300 \text{ GeV} (BM2, \text{green})$

Two benchmarks are calculated and compared with SM running (red)

yi.chung@mpi-hd.mpg.de

Top Yukawa from low scale to high scale

 $M_F \sim 1550 \text{ GeV}, m_s \sim 600 \text{ GeV}, M_s \sim 1400 \text{ GeV} (BM1, blue)$ $M_F \sim 850 \text{ GeV}, m_s \sim 450 \text{ GeV}, M_s \sim 1300 \text{ GeV} (BM2, \text{green})$

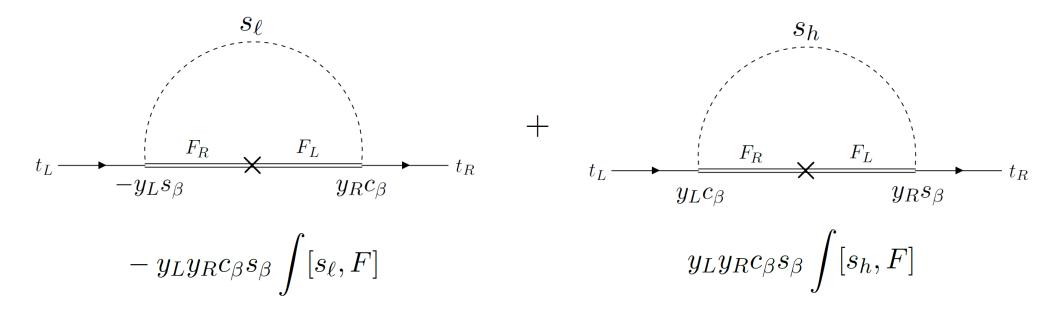
Two benchmarks are calculated and compared with SM running (red)

- The value of *y*_t is normalized according to the correct top mass
- Larger y_t due to additional diagrams with extra Higgs insertion, which lead to

 $\mathcal{L}_{\text{top}} = c_6 \left(\bar{q}_L H t_R \right) + c_{6+4n} \left(H^{\dagger} H \right)^n \left(\bar{q}_L H t_R \right)$

Main Constraint: top Yukawa measurement

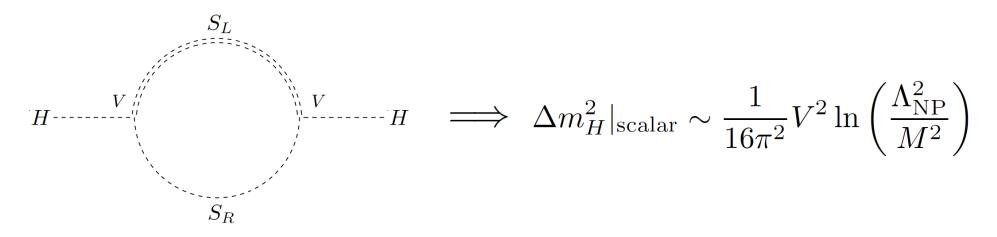
$$\kappa_t \equiv \frac{y_t}{y_t^{\rm SM}} = 1 + \mathcal{O}\left(\frac{V^2 v^2}{M^4}\right)$$


with current bound 0.7 < κ_t < 1.1 at 95% CL (likely be weaker considering off-shell effect)

yi.chung@mpi-hd.mpg.de

Running of the top quark mass

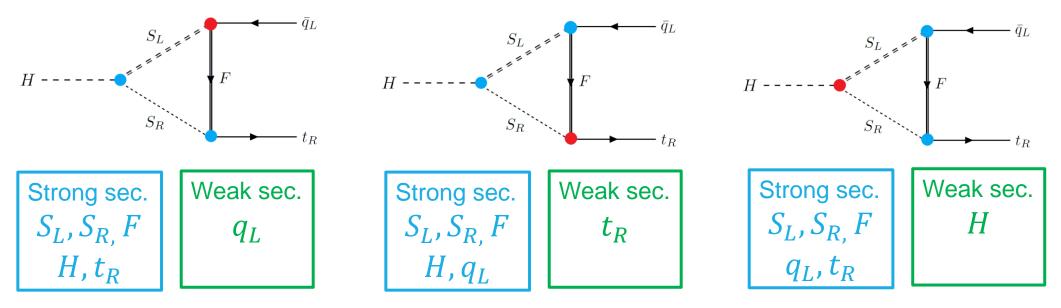
• The top quark mass is generated through



• The top quark mass m_t is radiatively generated in the intermediate scale \rightarrow Nontrivial running m_t at the high scale which will affect the $t\bar{t}$ cross section

Additional contribution

• The trilinear couplings between the Higgs and scalars will introduce a new loop


- > This loop is however logarithmically sensitive to NP and will not reintroduce a HP
- Assuming a low-scale UV completion, the correction leads to 7% tuning in both benchmarks, which is at the same order as the top-quark tuning. Therefore, the new scalar loops do not worsen the tuning.

yi.chung@mpi-hd.mpg.de

Top Yukawa from strong dynamics

- If y_t comes from pure strong dynamics, then even at one-loop level we expect $y_t \sim 4\pi$
- A suppression $\boldsymbol{\varepsilon}$ is required between the strong and weak sector to get $y_t \sim 1$
- Three possibilities

small M without large κ_t

yi.chung@mpi-hd.mpg.de

Strongly coupled UV theory

• A Top seesaw-like model based on $SU(3)_L \times SU(2)_R$ global symmetry with bound states

Weak sector:

$$H, Q_{L} = \begin{pmatrix} F_{L} \\ t_{L} \\ b_{L} \end{pmatrix}, \quad Q_{R} = \begin{pmatrix} F_{R} \\ t_{R} \end{pmatrix}$$

$$H \longrightarrow \begin{bmatrix} q_{L} \\ \bar{F}_{R} \\ \bar{F}_{R} \\ \bar{F}_{R} \\ \bar{F}_{L} \\ \bar$$

yi.chung@mpi-hd.mpg.de

y_t from four-fermion interaction

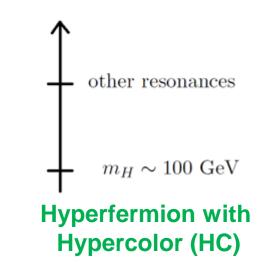
2309.00072

yi.chung@mpi-hd.mpg.de

Fundamental Composite Higgs Models

$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$

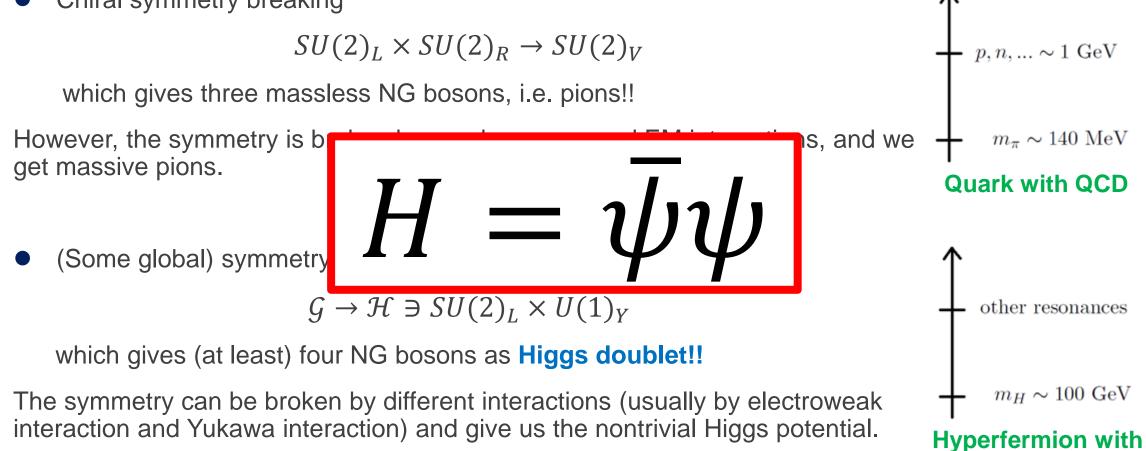
which gives three massless NG bosons, i.e. pions!!


 $p, n, \dots \sim 1 \text{ GeV}$ $m_{\pi} \sim 140 \text{ MeV}$ However, the symmetry is broken by quark masses and EM interactions, and we get massive pions. Quark with QCD

 $\mathcal{G} \to \mathcal{H} \ni SU(2)_L \times U(1)_V$

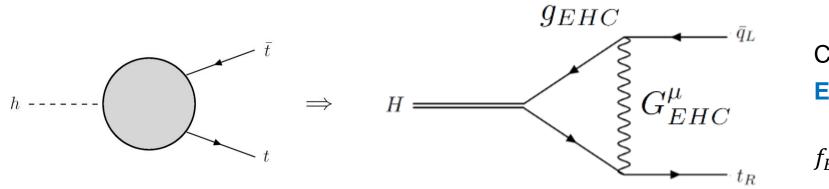
which gives (at least) four NG bosons as **Higgs doublet!!**

The symmetry can be broken by different interactions (usually by electroweak interaction and Yukawa interaction) and give us the nontrivial Higgs potential.



yi.chung@mpi-hd.mpg.de

Fundamental Composite Higgs Models


yi.chung@mpi-hd.mpg.de

Taming the Top Yukawa

Hypercolor (HC)

\boldsymbol{y}_t from four-fermion - bilinear

Composite Higgs with **Extended Hypercolor** $M_{EHC} = g_{EHC} f_{EHC}$ f_{EHC} : the scale of EHC

• Top Yukawa in CHM can originate from connecting the strong sector to a SM bilinear

$$\mathcal{L}_{\rm EHC} = g_{EHC} G^{\mu}_{EHC} (\bar{q}_L \gamma_\mu \psi_L + \bar{\psi}_R \gamma_\mu t_R) \rightarrow \mathcal{L}_{\rm eff} \supset \frac{g^2_{EHC}}{M^2_{EHC}} \left(\bar{\psi}_R \psi_L \right) (\bar{q}_L t_R)$$

• Naive dimensional analysis in CHM gives $\bar{\psi}_R \psi_L \sim (4\pi f_{HC}^2) H$ and thus

$$y_t \sim \frac{g_{EHC}^2}{M_{EHC}^2} \cdot 4\pi f_{HC}^2 \sim 4\pi \left(\frac{f_{HC}}{f_{EHC}}\right)^2 \sim 1 \implies f_{EHC} \sim 3.5 \times f_{HC} \gtrsim 3 \text{ TeV}$$

• The cutoff of top loop is determined by $M_{EHC} = g_{EHC} f_{EHC}$, which requires weak g_{EHC}

yi.chung@mpi-hd.mpg.de

Extend the gauge group in new direction

- To have a light EHC boson, we need it to be hypercolorless which require new approach.
- \succ Traditional approach $\mathcal{G}_{HC} \times \mathcal{G}_{SM} \subset \mathcal{G}_{E}$ $E_{\mu} = (N, \bar{3}, 1)$ $SU(N+3)_E \rightarrow SU(N)_{HC} \times SU(3)_C$ $Q_{L} = (N+3,2) \qquad \longrightarrow \begin{array}{l} \psi_{L} = (N,1,2), \qquad q_{L} = (1,3,2) \\ \psi_{R} = (N+3,1) \end{array} \rightarrow \begin{array}{l} \psi_{L} = (N,1,2), \qquad q_{L} = (1,3,2) \\ \psi_{R} = (N,1,1), \qquad t_{R} = (1,3,1) \\ \begin{array}{l} & & \\$ $E_{\mu} = (1, \bar{3}, 1)$ \succ New approach $\,\mathcal{G}_{HC} imes (\mathcal{G}_{HF} imes \mathcal{G}_{SM}\subset \mathcal{G}_E)$ $SU(3)_{HC} \times SU(4)_{EC} \rightarrow SU(3)_{HC} \times SU(3)_{EC} \rightarrow SU(3)_{C}$ $Q_L = (3, 4, 2) \rightarrow (3, 3, 2) + (3, 1, 2) \rightarrow (6, 2) + (\overline{3}, 2) + (3, 2)$ $Q_R = (3, 4, 1) \rightarrow (3, 3, 1) + (3, 1, 1) \rightarrow (6, 1) + (\overline{3}, 1) + (3, 1)$

A concrete model

• Gauge group

$$\begin{array}{lll} \mathcal{G}_E=SU(3)_{HC}\times SU(4)_{EC}\times SU(2)_W\times U(1)_X\\ g_H & g_E\sim g_s & g_X\sim g_Y \end{array}$$

 \bullet Fermion content

$$Q_L = (3, 4, 2, 1/24), \quad Q_R = (3, 4, 1, 13/24)$$

- Several steps are required
- A. The $\mathcal{G}_E \to \mathcal{G}_{SM}$ breaking at the scale $f_E \sim 1.7 \text{ TeV}$
- B. Composite Higgs formation at the scale $f \sim 1 \text{ TeV}$
- C. Generation of top Yukawa coupling at the scale M_E

Step A: Tumbling with exotic fermions

• To realize the first breaking dynamically, we need exotic fermions as sextet under $SU(3)_{HC}$

$$Q_L = (3, 4, 2, 1/24)$$
, $F_R = (6, 1, 2, 0)$

• The most attractive channel under $SU(3)_{HC}$ is RH 6 combined with some of LH 3

$$\bar{F}_R Q_L = \bar{\mathbf{6}} \mathbf{3} = (\bar{3}, 4, 1, 1/24) = \frac{f_E}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

which will break $\mathcal{G}_E
ightarrow \mathcal{G}_{SM}$. The fermion content then deconstruct to

$$Q_L \rightarrow f_L = (6,2)_0, \ \psi_L = (\bar{3},2)_0, \ q_L = (3,2)_{\frac{1}{6}}$$

 $Q_R \rightarrow f_R = (6,1)_{\frac{1}{2}}, \ \psi_R = (\bar{3},1)_{\frac{1}{2}}, \ t_R = (3,1)_{\frac{2}{3}}$

• The exotics *F* will mix with *f* of *Q* forming a massive Dirac color sextet fermion

yi.chung@mpi-hd.mpg.de

Step B: CHM by broken hypercolor

• After the first breaking, the $SU(3)_{HC}$ is broken and there is no further condensate.

$$g_c = \sqrt{8\pi^2/3} \sim 5.1~$$
 is critical coupling derived from NJL

• However, there is another $SU(3)_{EC}$ which allows tilting mechanism to happen

$$g_{\psi}^2 \sim g_H^2 + g_E^2 > g_c^2 \,, \quad g_t^2 \sim g_H^2 < g_c^2 \,$$

• For a realistic CHM, additional hyperfermion is required with

$$\Psi_1 = (\bar{3}, 2)_0, \ \Psi_2 = (\bar{3}, 1)_{\frac{1}{2}}, \ \Psi_3 = (\bar{3}, 1)_{-\frac{1}{2}}$$

which results in a SU(4) \times SU(4) / SU(4) FCHM with 15 pNGBs including Higgs

Step C: Top Yukawa from the E_{μ} boson

• In this model, we can then generate the top Yukawa coupling with a value given by

$$\psi_t \sim \frac{1}{v} \frac{g_E^2}{M_E^2} \langle \bar{\psi_R} \psi_L \rangle_{HC} \sim \left(\frac{f}{f_E}\right)^2 Y_S$$
 ,where $Y_S \sim \frac{4\pi}{\sqrt{N_{HC} \ln(\Lambda^2/M_\psi^2)}}$

• Taking Y_S = 3, we get the relation among the scale for the observed top Yukawa as $f_E\sim \sqrt{Y_S}\times f\sim 1.7\times f$

PS It is derived from bottom-up and will be more attractive if one get derive from top down.

• With $g_E \sim g_s \sim 1$ and $f_E \sim 1.7$ TeV, the mass of E_{μ} boson is given by

$$M_E = \frac{1}{2} g_E f_E \sim 0.9 \text{ TeV}$$
 The desired light cutoff !!

Breaking pattern

$$SU(3)_{HC} \times SU(4)_{EC} \times SU(2)_W \times U(1)_X$$

$$\int \bar{F}_R Q_L = \bar{\mathbf{6}} \mathbf{3} \text{ condensate with } f_E \sim 1.7 \text{ TeV}$$

$$SU(3)_C \times SU(2)_W \times U(1)_Y + \text{massive } G', E_\mu, Z', \text{ fermion sextet } F$$

$$\int \bar{\psi}_R \psi_L = \bar{\mathbf{3}} \mathbf{3} \text{ condensate with } f \sim 1 \text{ TeV}$$

$$SU(3)_C \times SU(2)_W \times U(1)_Y + \text{ composite Higgs}$$

$$\int \text{ intergrating out } E_\mu \text{ with } M_E \sim 0.9 \text{ TeV}$$

$$SU(3)_C \times SU(2)_W \times U(1)_Y + \text{ composite Higgs } + \text{ "Top Yukawa"}$$

The overall spectrum

$$\begin{split} M_{G'} &= \frac{1}{\sqrt{2}} \sqrt{g_H^2 + g_E^2} f_E \sim 6 ~ \text{TeV} \quad \text{Coloron} \\ M_F &\sim Y_s f_E \sim 5 ~ \text{TeV} \quad \text{Sextet fermion} \\ M_\psi &\sim Y_s f \sim 3 ~ \text{TeV} \quad \text{Triplet fermion} \end{split} \quad \begin{aligned} & \text{Hypercolored} \\ \text{Particles} \\ @ \text{ few TeV} \end{aligned}$$

$$M_E = rac{1}{2} g_E f_E \sim 0.9 ext{ TeV}$$
 $E_{\mu} ext{boson}$ Hypercolorless
 $M_{Z'} = rac{1}{\sqrt{8}} \sqrt{c^2 g_X^2 + g_E^2} f_E \sim 0.6 ext{ TeV}$ Z' boson @ sub TeV

48/20

yi.chung@mpi-hd.mpg.de