Optimized Observables in non-leptonic decays

Gilberto Tetlalmatzi-Xolocotzi

Based on: JHEP 06 (2023) 108 (2301.10542)

2404.01186 (accepted in JHEP)

In collaboration with: A. Biswas, S. Descotes-Genon, Q. Matias

CPPS, Theoretische Physik 1, Universität Siegen

Université Paris-Saclay, CNRS/IN2P3, IJCLab,

ICHEP 2024

Prague July $20th 2024$

Relevant decay processes

Penguin induced processes: $b \rightarrow d$ and $b \rightarrow s$

$$
\bar{A}_f \coloneqq \lambda_u^{(q)} T_q + \lambda_c^{(q)} P_q = \lambda_u^{(q)} \Delta_q - \lambda_t^{(q)} P_q \qquad \qquad q = d \, , \, s
$$
\n
$$
\lambda_u^{(q)} + \lambda_c^{(q)} + \lambda_t^{(q)} = 0
$$

 $\Delta_q = T_q - P_q$ Free from infrared divergences

The amplitudes are calculated using QCDF

Beneke et. al. 0308039 [hep-ph]

$$
T(\bar{B}_d \to \bar{K}^0 K^0) = A_{\bar{K}^K K} [\alpha_4^u - \frac{1}{2} \alpha_{4, EW}^u + \beta_3^u + \beta_4^u - \frac{1}{2} \beta_{3, EW}^u - \frac{1}{2} \beta_{4, EW}^u]
$$

+ $A_{K \bar{K}} [\beta_4^u - \frac{1}{2} \beta_{4, EW}^u],$

$$
P(\bar{B}_d \to \bar{K}^0 K^0) = A_{\bar{K}^K K} [\alpha_4^c - \frac{1}{2} \alpha_{4, EW}^c + \beta_3^c + \beta_4^c - \frac{1}{2} \beta_{3, EW}^c - \frac{1}{2} \beta_{4, EW}^c]
$$

+ $A_{K \bar{K}} [\beta_4^c - \frac{1}{2} \beta_{4, EW}^c],$

The infrared divergences in *T* and *P* have the same structure

$$
\alpha_4^p(M_1M_2) = a_4^p(M_1M_2) + r_{\chi}^{M_2} a_6^p(M_1M_2)
$$

$$
a_i^p(M_1M_2) = \left(C_i + \frac{C_{i\pm 1}}{N_c}\right) N_i(M_2) + \frac{C_{i\pm 1}}{N_c} \frac{C_F \alpha_s}{4\pi} \left(V_i(M_2)\right) + \frac{4\pi^2}{N_c} H_i(M_1M_2)\right) + P_i^p(M_2),
$$

Vertex corrections

$$
a_i^p(M_1M_2) = \left(C_i + \frac{C_{i\pm 1}}{N_c}\right) N_i(M_2) + \frac{C_{i\pm 1}}{N_c} \frac{C_F \alpha_s}{4\pi} \left[V_i(M_2) + \frac{4\pi^2}{N_c} H_i(M_1M_2)\right] + P_i^p(M_2),
$$

Spectator scattering

$$
a_i^p(M_1M_2) = \left(C_i + \frac{C_{i\pm 1}}{N_c}\right) N_i(M_2) + \frac{C_{i\pm 1}}{N_c} \frac{C_F \alpha_s}{4\pi} \left[V_i(M_2) + \frac{4\pi^2}{N_c} H_i(M_1M_2) \right] + \left(P_i^p(M_2)\right),
$$

Penguin contributions

Annihilation contributions

Weak annihilation topolgies are affected by LCDA end point singularities

 M_1

 M_{2}

 \overline{B}

$$
\implies \int_0^1 \frac{dy}{y} \to X_A
$$

Educated Ansatz

$$
0 \le \rho_A \le 1, \quad 0 \le \varphi_A \le 2\pi
$$

Data can be used to get bounds for these contributuions *GTX, T. Huber 2111.06418 [hep-ph]*

 β , b

For decays of *B* mesons into pseudoscalar-pseudoscalar final states

$$
|\beta_i| \le 0.40 \quad \text{for} \quad |\alpha_1| \approx 1 \qquad \text{SU(3) flavour exact}
$$

Another possibility is to construct observables with low sensitivity to these contributions

$$
L_{K\bar{K}} = \rho(m_{K^0}, m_{K^0}) \frac{\mathcal{B}(\bar{B}_s \to K^0 \bar{K}^0)}{\mathcal{B}(\bar{B}_d \to K^0 \bar{K}^0)} = \frac{|A^s|^2 + |\bar{A}^s|^2}{|A^d|^2 + |\bar{A}^d|^2}
$$

Phase space factor

$$
L_{K\bar{K}} = \rho(m_{K^0}, m_{K^0}) \frac{\mathcal{B}(\bar{B}_s \to K^0 \bar{K}^0)}{\mathcal{B}(\bar{B}_d \to K^0 \bar{K}^0)} = \frac{|A^s|^2 + |\bar{A}^s|^2}{|A^d|^2 + |\bar{A}^d|^2}
$$

$$
L_{K^*\bar{K}^*} = \rho(m_{K^{*0}}, m_{K^{*0}}) \frac{\mathcal{B}(\bar{B}_s \to K^{*0}\bar{K}^{*0})}{\mathcal{B}(\bar{B}_d \to K^{*0}\bar{K}^{*0})} \frac{f_L^{B_s}}{f_L^{B_d}} = \frac{|A_0^s|^2 + |\bar{A}_0^s|^2}{|A_0^d|^2 + |\bar{A}_0^d|^2}
$$

S. Descotes, J. Matias, et al 2011.07867 [hep-ph]

Only the longitudinal component is factorizable (vector-vector final states)

$$
L_{K^*\bar{K}^*} = \kappa \left| \frac{P_s}{P_d} \right|^2 \left[\frac{1 + |\alpha^s|^2 \left| \frac{\Delta_s}{P_s} \right|^2 + 2 \text{Re} \left(\frac{\Delta_s}{P_s} \right) \text{Re} (\alpha^s)}{1 + |\alpha^d|^2 \left| \frac{\Delta_d}{P_d} \right|^2 + 2 \text{Re} \left(\frac{\Delta_d}{P_d} \right) \text{Re} (\alpha^d)} \right] \right] \qquad \alpha^d = (-0.0136^{+0.0095}_{-0.0096}) + i(0.4181^{+0.0085}_{-0.0064}),
$$

$$
\alpha^s = (0.00863^{+0.00040}_{-0.00036}) + i(-0.01829^{+0.00037}_{-0.00042}),
$$

$$
\kappa = \left| \frac{\lambda_c^s + \lambda_u^s}{\lambda_c^d + \lambda_u^d} \right|^2 = 22.92^{+0.52}_{-0.30}.
$$

 $\mathsf{SU}(3)$ $\left|\frac{P_s}{P}\right| = 1 \pm 0.3$ Naive **Factorization** QCD **Factorization**

Under the assumption of *U-Spin symmetry* in the sources of infrared divergences we expect that they fluctuate in the same direction in numerator and denominator

Theory prediction

naive
$$
SU(3): L_{K^*\bar{K}^*} = 23^{+16}_{-12}
$$
 1.9 σ ,
fact $SU(3): L_{K^*\bar{K}^*} = 19.2^{+9.3}_{-6.5}$ 3.0 σ ,
QCD fact: $L_{K^*\bar{K}^*}^{SM} = 19.53^{+9.14}_{-6.64}$ 2.6 σ ,

- *S. Descotes, J. Matias, et al 2011.07867 [hep-ph]*
- *A. Biswas, S. Descotes, J. Matias, GTX 2301.10542 [hep-ph]*

Experimental measurement

$$
\frac{\mathcal{B}_{B_d \rightarrow K^{*0}\bar{K}^{*0}}}{\mathcal{B}_{B_s \rightarrow K^{*0}\bar{K}^{*0}}} = 0.0758 \pm 0.0057 \text{(stat)} \pm 0.0025 \text{(syst)} \pm 0.0016 \left(\frac{f_s}{f_d}\right)
$$

LHCb [1905.06662, 0708.2248]

LHCb [1905.06662], BABAR [0708.2248] S. Descotes, J. Matias, et al 2011.07867 [hep-ph]

$$
L_{K^*\bar{K}^*}^{\text{exp}} = 4.43 \pm 0.92
$$

 2.6σ tension

$$
L_{K\bar{K}} = \rho(m_{K^0}, m_{K^0}) \frac{\mathcal{B}(\bar{B}_s \to K^0 \bar{K}^0)}{\mathcal{B}(\bar{B}_d \to K^0 \bar{K}^0)} = \frac{|A^s|^2 + |\bar{A}^s|^2}{|A^d|^2 + |\bar{A}^d|^2}
$$

$$
L_{K^*\phi} = \rho(m_{K^{*0}}, m_{\phi}) \frac{\mathcal{B}(\bar{B}_d \to \bar{K}^{*0}\phi)}{\mathcal{B}(\bar{B}_s \to K^{*0}\phi)} \frac{f_L^{B_d}}{f_L^{B_s}}
$$

BABAR 0808.3586, BELLE 1308.1830, LHCb 1403.2888, LHCb 1306.2239

$$
L_{K^*\phi}^{\text{th}} = 22.04^{+7.06}_{-4.88} \qquad L_{K^*\phi}^{\text{exp}} = 8.80^{+6.07}_{-2.97} \qquad 1.48 \text{ } \sigma
$$

A. Biswas, S. Descotes, J. Matias, GTX 2404.01186 [hep-ph]

Pseudoscalar-Vector final states

 $\mathcal{B}(\bar{B}_d \to \bar{K}^0 \phi)^{\text{th}} = (4.28^{+2.71}_{-1.50}) \times 10^{-6}$ $\mathcal{B}(\bar{B_d} \to \bar{K}^0 \phi)^{\text{exp}} = (7.3 \pm 0.7) \times 10^{-6}$

BABAR 1201.5897, BELLE 0307014

$$
\mathcal{B}(B^- \to K^- \phi)^{\text{th}} = (4.67^{+2.98}_{-1.63}) \times 10^{-6} \qquad \mathcal{B}(B^- \to K^- \phi)^{\text{exp}} = (8.8^{+0.7}_{-0.6}) \times 10^{-6}
$$

BABAR 1201.5897, BELLE 0412066, CDF 0502044, CLEO2 0101032

 $\mathcal{B}(B_s \to K^{*0} \bar{K}^0)^{\text{exp}} + \mathcal{B}(B_s \to \bar{K}^{*0} K^0)^{\text{exp}} = (1.98 \pm 0.28 \pm 0.50) \times 10^{-5}$

 $\mathcal{B}(\bar{B}_s \to K^{*0} \bar{K}^0 + c.c.)^{\text{th},} = (8.35^{+5.02}_{-2.51}) \times 10^{-6}$

A. Biswas ,S. Descotes, J. Matias and GTX 2404.01186 [hep-ph]

Complementary observables are required experimentally to define the corresponding optimized ratios

Processes considered

A new puzzle in non-leptonic decays?

The New physics explanation can only be addressed by combining at least two effective operators (Q₄, Q₆) or (Q₆, Q₈) in the $b \rightarrow d$ and $b \rightarrow s$ transitions

$$
Q_{4f} = (\bar{f}_i b_j)_{V-A} \sum^q (\bar{q}_j q_i)_{V-A}, \qquad Q_{6f} = (\bar{f}_i b_j)_{V-A} \sum^q (\bar{q}_j q_i)_{V+A} \qquad Q_{8gf} = \frac{-g_s}{8\pi^2} m_b \bar{f} \sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} b
$$

 $f = d, s$

Conclusions

Non-leptonic *B meson decay processes suffer from big uncertainties on the theory side (power corrections).*

An open problem is how to address the (power suppressed) annihilation divergences from first principles.

An possible approach is to construct optimized observables which relying on Uspin symmetry are relatively insensitive towards power correction uncertainties .

Examples of these observables are the ratios

$$
L_{K^{(*)}K^{(*)}} \propto \frac{\mathcal{B}(B_s \to K^{0(*)}\bar{K}^{0(*)})}{\mathcal{B}(B_d \to K^{0(*)}\bar{K}^{0(*)})}
$$

which are in tension of the experiment up to the 2.6σ level.

The tensions can be addressed in terms of NP in two operators: Q4, Q6 and Q8g .