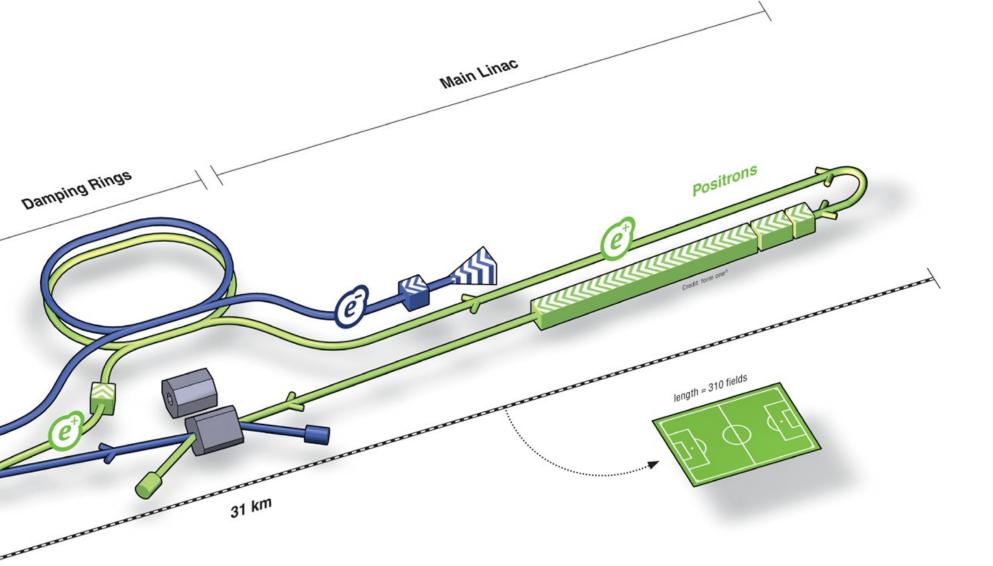
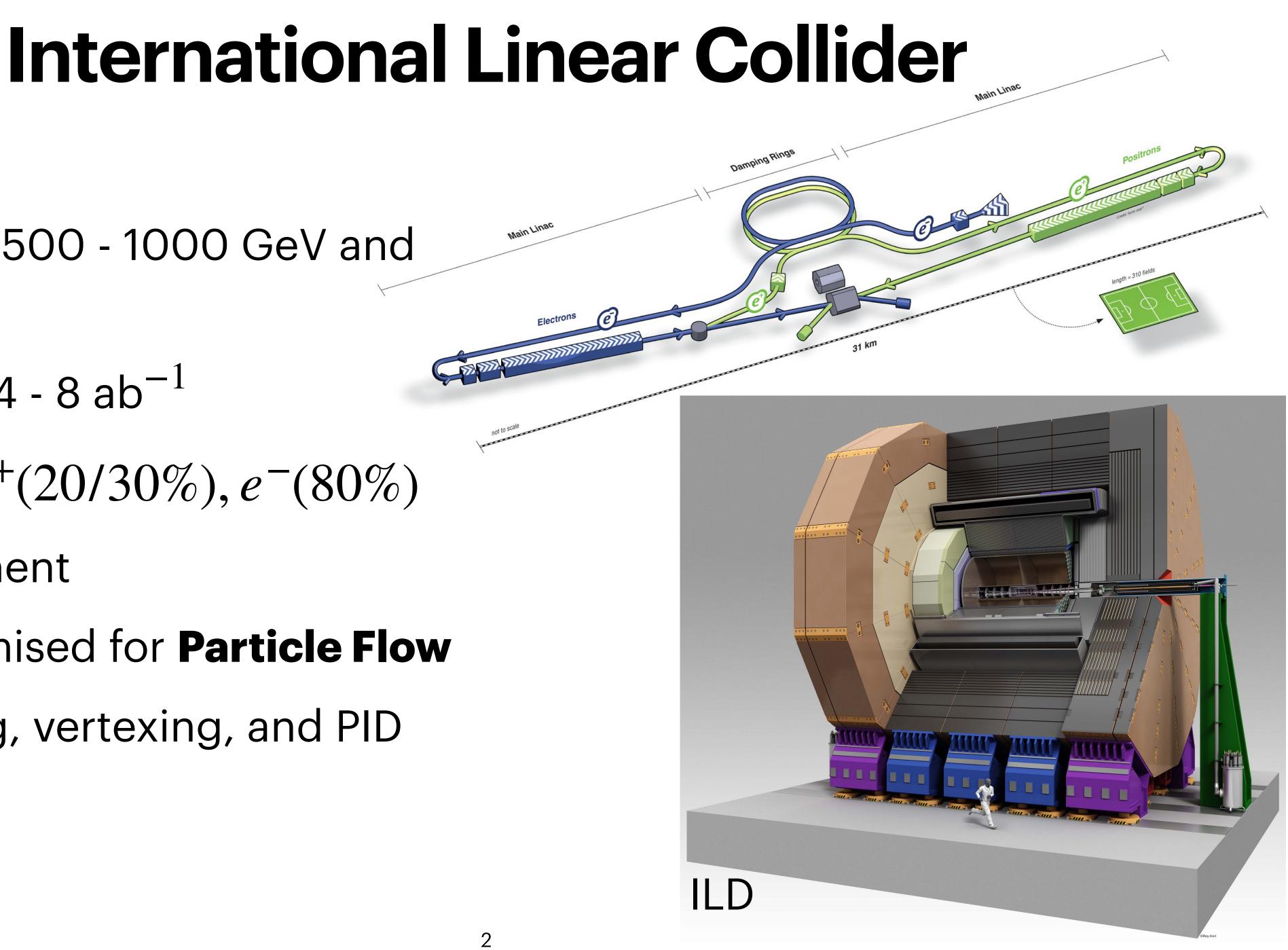
Heavy flavor studies at ILC

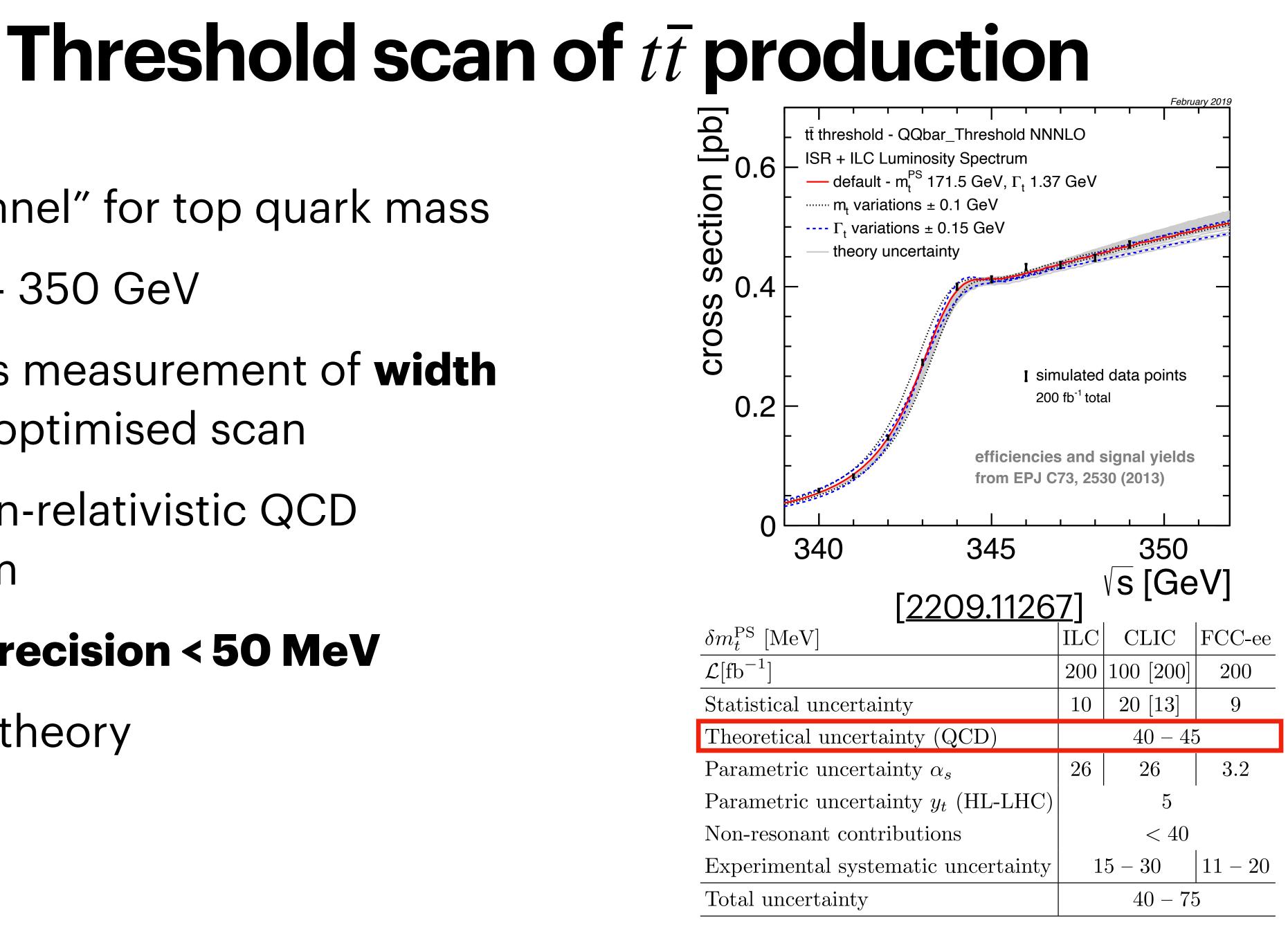
The state of the s



Andrej Saibel, ICHEP 2024 18th of July On behalf of the ILC International Development Team Physics and Detector Working Group



- ILC Runs: 250 500 1000 GeV and "GigaZ"
- Luminosity: $2 4 8 ab^{-1}$
- Polarisation: $e^+(20/30\%)$, $e^-(80\%)$
- Clean environment
- Detectors optimised for Particle Flow
- Precise tracking, vertexing, and PID

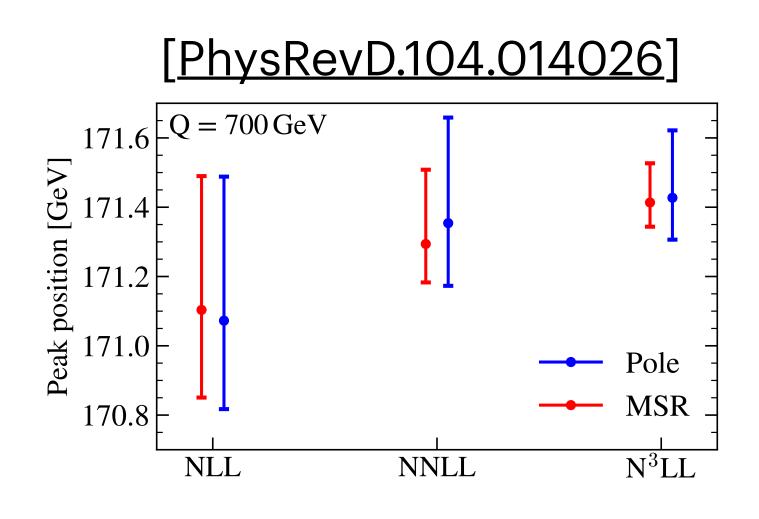



Top-quark and its properties

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summa	ry, √s = 1.96-13 TeV Nove	ember 2023
LHC comb. (Sep 2023*), 7+8 TeV LHCtop	wg [1][16]		
statistical uncertainty		total stat	
total uncertainty		m. + total (stat + syst + recoil) [Ge\	/I dt Bef
LHC comb. (Sep 2023*), 7+8 TeV		172.52 ± 0.33 (0.14 ± 0.30)	∫ ≤20 fb ⁻¹ [1][16]
World comb. (Mar 2014), 1.9+7 TeV	-1	173.34 ± 0.76 (0.36 ± 0.67)	≤8.7 fb ⁻¹ , [2]
ATLAS, I+jets, 7 TeV		172.33 ± 1.27 (0.75 ± 1.02)	4.6 fb ⁻¹ , [3]
ATLAS, dilepton, 7 TeV	 1	173.79 ± 1.42 (0.54 ± 1.31)	4.6 fb ⁻¹ [3]
ATLAS, all jets, 7 TeV		175.1±1.8 (1.4±1.2)	4.6 fb ⁻¹ , [4]
ATLAS, dilepton, 8 TeV	l i i i i i i i i i i i i i i i i i i i	172.99 ± 0.84 (0.41± 0.74)	20.3 fb ⁻¹ , [5]
ATLAS, all jets, 8 TeV		173.72 ± 1.15 (0.55 ± 1.02)	20.3 fb ⁻¹ , [6]
ATLAS, I+jets, 8 TeV		172.08 \pm 0.91 (0.39 \pm 0.82)	20.2 fb ⁻¹ , [7]
ATLAS comb. (Sep 2023*) 7+8 TeV H▼ H		172.71 \pm 0.48 (0.25 \pm 0.41)	$\leq 20.3 \text{ fb}^{-1}$ [1]
ATLAS, leptonic inv. mass, 13 TeV	+ = + -1	$174.41 {\pm}~0.81~(0.39 {\pm}~0.66 {\pm}~0.25)$	36.1 fb ⁻¹ , [8]
ATLAS, dilepton (*), 13 TeV		$172.21 \pm 0.80 \; (0.20 \pm 0.67 \pm 0.39)$	139 fb⁻¹ [9]
CMS, I+jets, 7 TeV	+1	$173.49 \pm 1.07 \; (0.43 \pm 0.98)$	4.9 fb ⁻¹ , [10]
CMS, dilepton, 7 TeV	-	$172.5 \pm 1.6 \; (0.4 \pm 1.5)$	4.9 fb ⁻¹ , [11]
CMS, all jets, 7 TeV	-+1	173.49 ± 1.39 (0.69 ± 1.21)	3.5 fb ⁻¹ . [12]
CMS, I+jets, 8 TeV		172.35 ± 0.51 (0.16 ± 0.48)	19.7 fb ⁻¹ , [13]
CMS, dilepton, 8 TeV		$172.22 \begin{array}{c} +0.91\\ -0.95 \end{array} (0.18 \begin{array}{c} +0.83\\ -0.93 \end{array})$	19.7 fb⁻¹, [14]
CMS, all jets, 8 TeV		$172.32 \pm 0.64 \ (0.25 \pm 0.59)$	19.7 fb ⁻¹ , [13]
CMS, single top, 8 TeV		172.95 \pm 1.22 (0.77 $^{+0.97}_{-0.93}$)	19.7 fb ⁻¹ , [15]
CMS comb. (Sep 2023*), 7+8 TeV ⊢++		172.52 ± 0.42 (0.14 ± 0.39)	$\leq 19.7 \text{ fb}^{-1}$ [16]
CMS, all jets, 13 TeV		172.34 \pm 0.73 (0.20 $^{+0.66}_{-0.72}$)	35.9 fb ⁻¹ [17]
CMS, dilepton, 13 TeV		172.33 ± 0.70 (0.14 ± 0.69)	35.9 fb ⁻¹ , [18]
CMS, I+jets, 13 TeV		171.77 ± 0.37	35.9 fb ⁻¹ , [19]
CMS, single top, 13 TeV		172.13 _{-0.77} (0.32 _{-0.71})	35.9 fb ⁻ ', [20]
CMS, boosted, 13 TeV	1	173.06 ± 0.84 (0.24)	138 fb⁻¹, [21]
* Preliminary	 ATLAS-CONF-2023-066 arXiv:1403.4427 EPJC 75 (2015) 330 EPJC 75 (2015) 158 PLB 761 (2016) 350 JHEP 09 (2017) 118 EPJC 79 (2019) 290 	[9] ATLAS-CONF-2022-058 [16] CMS [10] JHEP 12 (2012) 105 [17] EPJC [11] EPJC 72 (2012) 2202 [18] EPJC [12] EPJC 74 (2014) 2758 [19] EPJC [13] PRD 93 (2016) 072004 [20] JHEF	C 77 (2017) 354 -PAS-TOP-22-001 C 79 (2019) 313 C 79 (2019) 368 C 83 (2023) 963 P 12 (2021) 161 C 83 (2023) 560
165 170	175	180	185
	_p [GeV]		

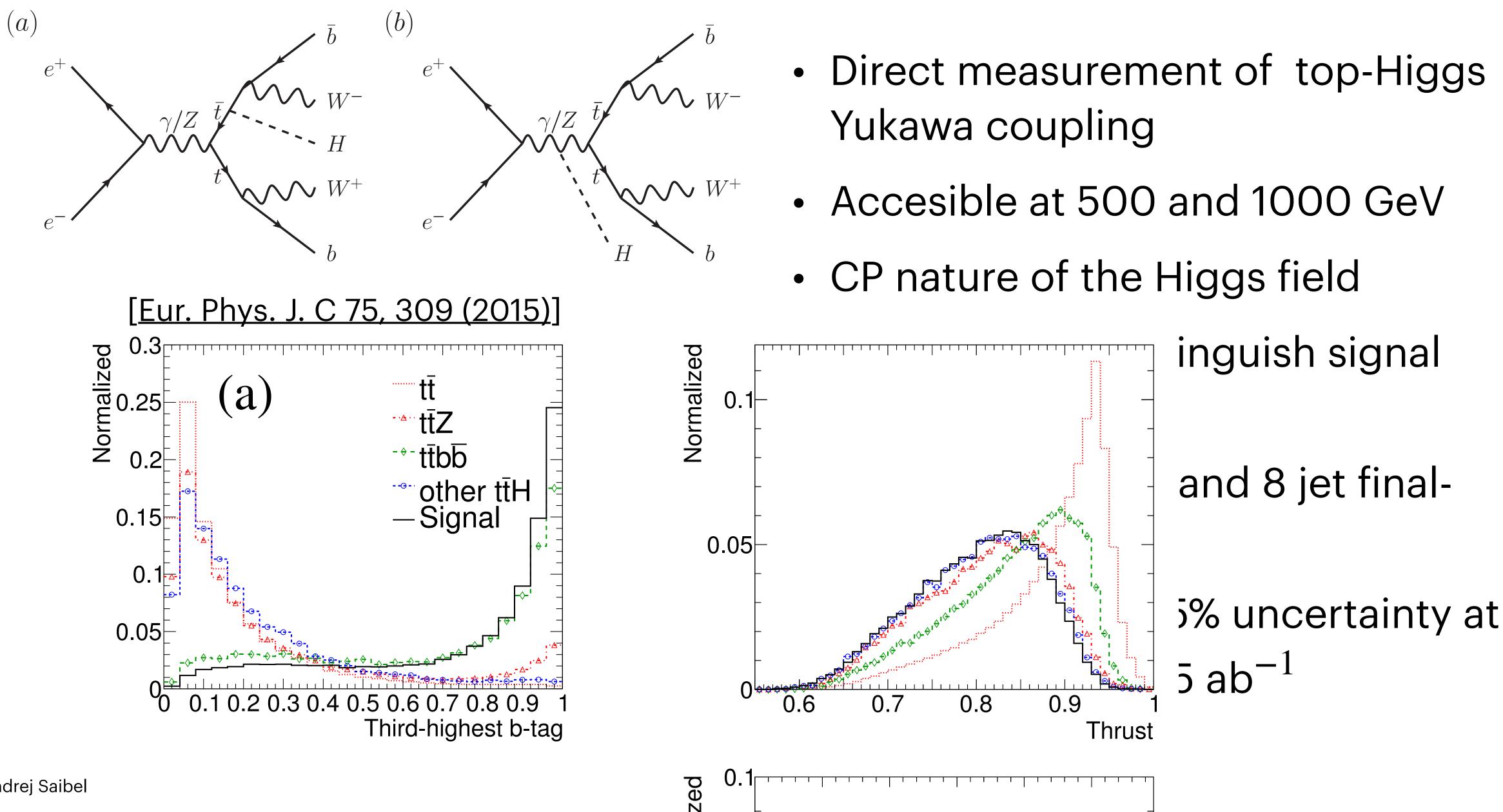
- Fundamental parameter of SM
- Only particle with Yukawa coupling $\,\approx\,1$
- Contribution to many Higgs processes
- Stability of electroweak vacuum
 - Limited by m_t precision
 - Necessity of new physics/SUSY

- "Golden channel" for top quark mass
 - Scan: 340 350 GeV
- Simultaneous measurement of width and mass in optimised scan
- Access to non-relativistic QCD and toponium
- Achievable precision < 50 MeV
 - Limited by theory



- Measurement of collimated "top jets", thrust
 - Accesible at ILC 1 TeV
- Interpretation of measured value in theory

•
$$m_t^{\text{MC}} \rightarrow m_t^{\text{Pole}}$$


• Achievable precision ≈ 100 MeV

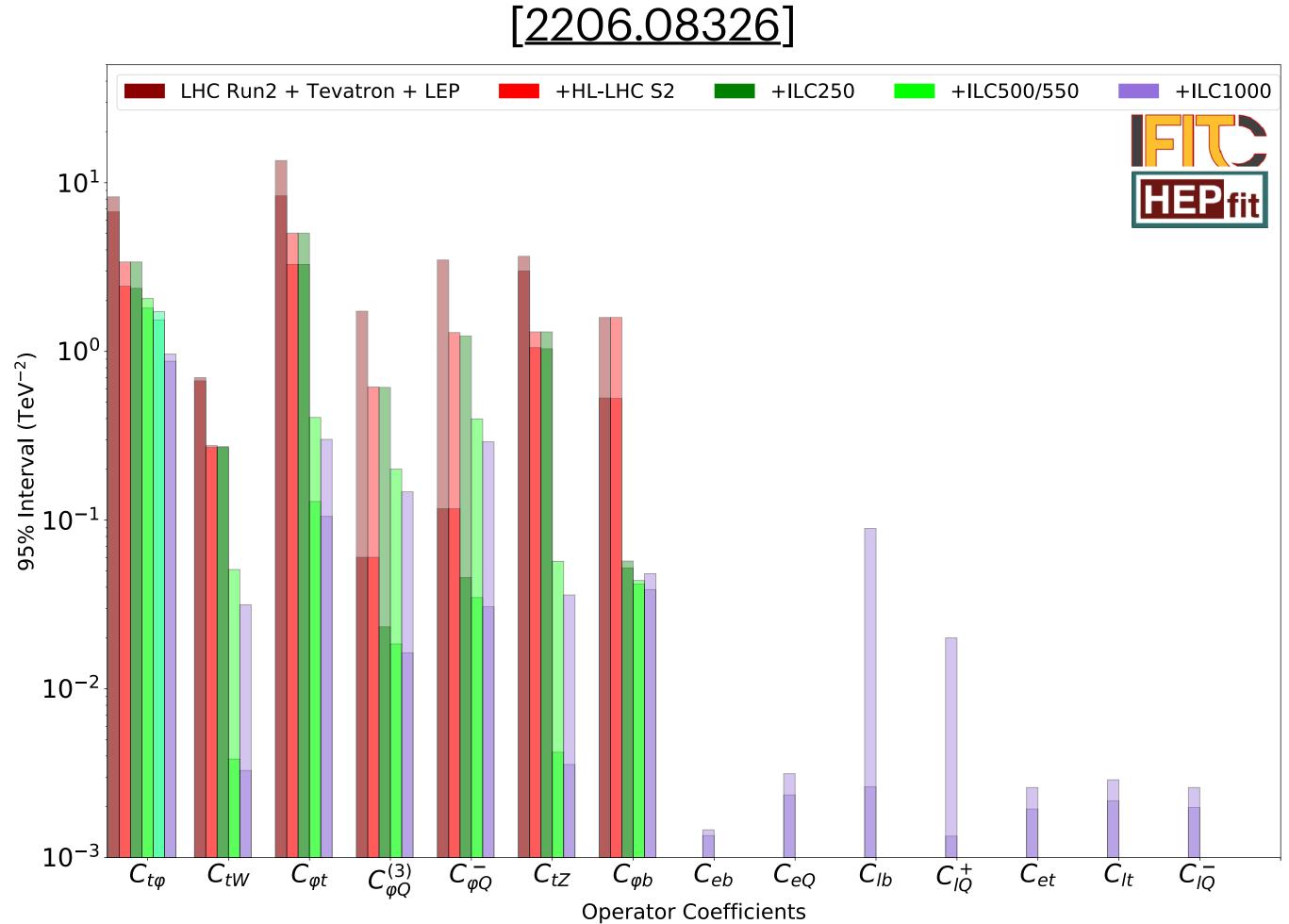
Andrej Saibel

mass	Q	Peak Positions [GeV]							
scheme	[GeV]	NLL	NNLL	$N^{3}LL$					
MSR	700	$171.104_{-0.253}^{+0.386}$	$171.294\substack{+0.214\\-0.111}$	$171.414\substack{+0.113\\-0.070}$					
	2000	$175.008^{+1.858}_{-0.910}$	$176.403^{+1.287}_{-0.690}$	$176.541_{-0.367}^{+0.574}$					
Pole	700	$171.073_{-0.255}^{+0.416}$	$171.354_{-0.181}^{+0.305}$	$171.427^{+0.195}_{-0.121}$ $176.448^{+0.750}_{-0.587}$					
1 010	2000	$174.377_{-0.938}^{+2.087}$	$176.126^{+1.461}_{-0.915}$	$176.448_{-0.587}^{+0.750}$					

ttH production

- Direct measurement of top-Higgs
- Accesible at 500 and 1000 GeV
- CP nature of the Higgs field

SMEFT at ILC


- Model independent search/exclusion new physics at high energies
- Measurements above tt
 therease the text of tex of tex of text of tex of text o
- Two and four fermion operators
- Contributions from Z and photon can disentangled through **beam** polarisation

[F. Cornet, V. Miralles]

of		2-quark opera	tors								
		Couplings quark to		t- and b		EW dipole	operators				
		$O_{\varphi Q}^3 \equiv$	$\left(\bar{Q}\tau^{\prime}\gamma^{\mu}Q\right)$	$) \left(\varphi^{\dagger} i \overleftrightarrow{D}'_{\mu} \right) $	$\varphi \Big)$	$O_{uW} \equiv ($	$\bar{Q}\tau'\sigma^{\mu\nu}t\Big)$	$\left(\varepsilon \varphi^* W_{\mu\nu}'\right)$			
'e		$O^{1}_{\varphi Q} \equiv O_{\varphi t(b)} \equiv$	$(Q\gamma^{\mu}Q)$ $(\overline{t}(\overline{b})\gamma^{\mu}t($	$ \begin{pmatrix} \varphi^{\dagger} i \overleftrightarrow{D}^{\prime}_{\mu} \\ \varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \\ \phi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \end{pmatrix} $ $ \begin{pmatrix} \varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \\ \phi^{\dagger} i \overleftrightarrow{D} \end{pmatrix} $	$\left(\mu \varphi \right)$	$O_{tB} \equiv \left(\bar{Q}\sigma^{\mu\nu}t\right)\left(\varepsilon\varphi^*B_{\mu\nu}\right)$					
		Chromo-m	agnetic d	ipole op.		t-quark yukawa					
		$O_{tG} \equiv \left(\bar{\zeta}\right)$	$\left(\sigma^{\mu\nu}T^{A}t\right)$	$\left(\varepsilon\varphi^{*}G^{A}_{\mu\nu}\right)$)	$O_{t\varphi} \equiv \left(\bar{Q}t ight) \left(\varepsilon \varphi^* \varphi^\dagger \varphi ight)$					
		4-quark opera	tors								
be		Couplings of light quarks with t- and b-quarks									
		0 ⁸ _{tu}	O_{td}^8	$O_{Qq}^{1,8}$	0 ⁸ Q	u O ⁸ Qd	0 ^{3,8} Qq	O_{tq}^{8}			
	2-quark 2-lepton operators										
	Couplings of light leptons with t- and b-quarks										
		0 _{eb}	O _{lb}	O _{et}	O_{lt}	O_{eQ}	O_{IQ}^+	O^{IQ}			
1											

SMEFT at ILC

Improvements of up to two orders of magnitude compared to HL-LHC

Andrej Saibel

Two Fermion Final State and BSM Physics

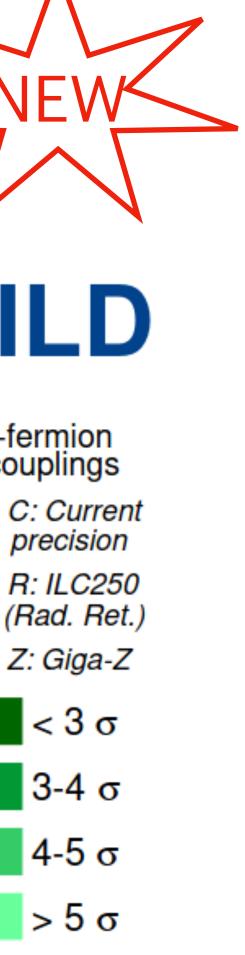
- Precise measurements of Z-boson fermion couplings enable study of BSM physics
- Gauge Higgs Unification models predict new Bosons at high energies
 - New contributions + Modification of couplings
- Measurements of differential crosssections at $\sqrt{s} > m_Z$ at ILC can lead to observation/exclusion of BSM
- Dedicated talk 19th July, 09:00 South Hall 2A

[<u>Eur. Phys. J. C 84, 537 (2024)</u>]

GHU vs SM discrimination power (σ -level)

	C I	R	Z	C	R	Z	C	R	Z	C	R	Z
А ₁	0.8	3.9	4.2	1.0	5.0	5.5	5.3	>10	>10	>10	>10	>10
A ₂	0.6	3.3	3.6	0.9	4.8	5.3	4.3	>10	>10	>10	>10	>10
B ⁻ 1	0.5	1.4	1.4	0.9	2.7	2.8	3.3	9.6	9.9	>10	>10	>10
B_1^+	0.3	1.6	1.7	0.7	3.2	3.5	1.5	4.4	4.7	4.3	6.8	7.0
B ₂	0.2	0.7	0.7	0.5	1.4	1.5	1.7	4.6	4.8	6.3	>10	>10
B_2^+	0.2	0.7	0.8	0.3	1.5	1.6	0.9	2.2	2.3	3.0	4.4	4.5
B ₃	0.1	0.4	0.5	0.3	0.9	0.9	0.9	2.7	2.7	3.3	6.7	6.8
B_3^+	0.1	0.4	0.5	0.1	0.7	0.8	0.5	1.3	1.3	1.6	2.5	2.5

Z-fermion couplings


 C: Current precision

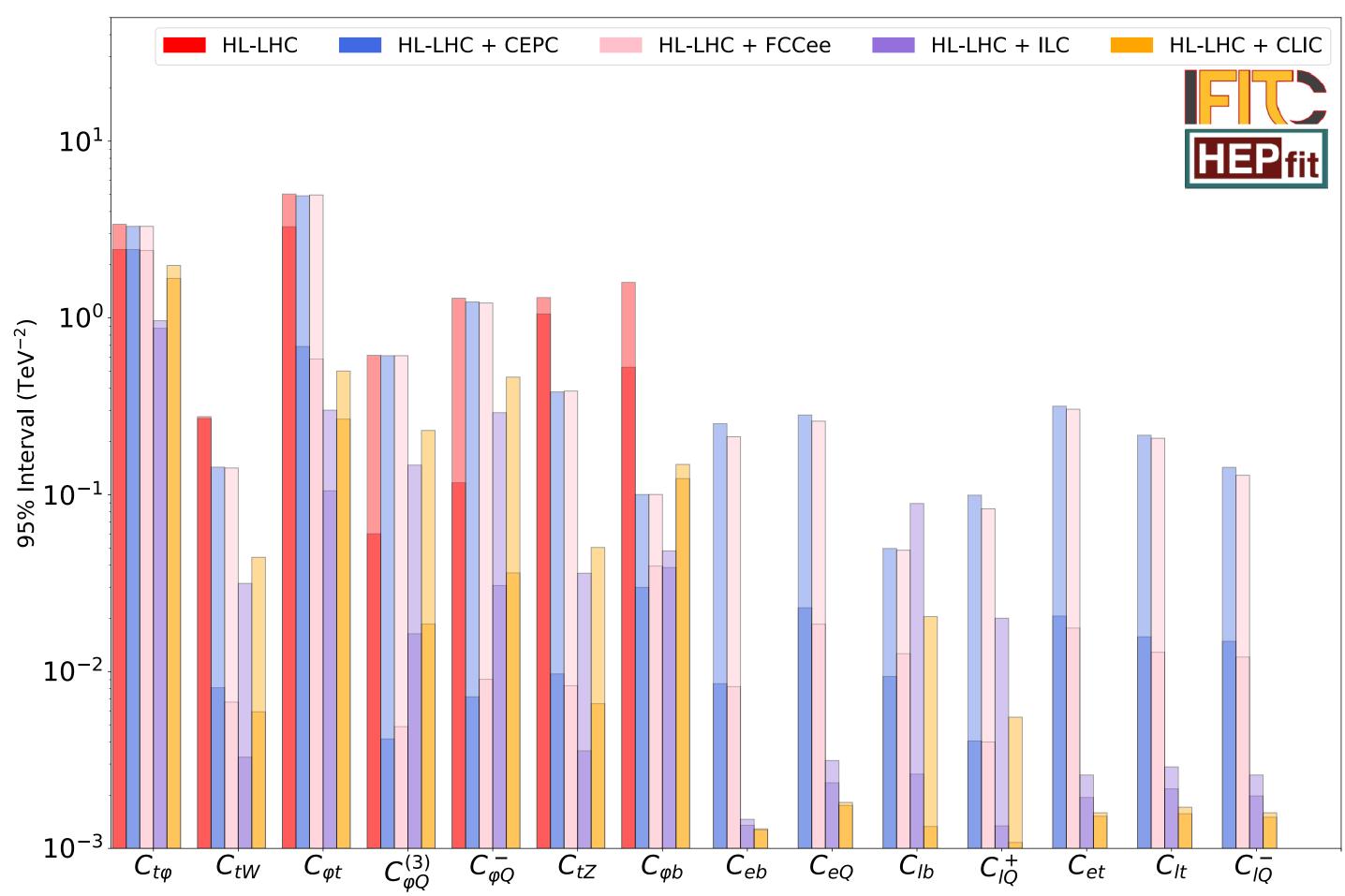
 R: ILC250 (Rad. Ret.)

• Z: Giga-Z

<3σ 3-4 σ 4-5 σ > 5 σ

ILC250 ILC250 ILC250 ILC250 (no pol.) +500 +500 +1000*

Conclusion


- Rich heavy flavor physics program at ILC
- Clean environment enables precise measurements
- The top-quark is properties are important ingredients for SM and BSM physics
- **Beam polarisation** improves sensitivity of measurements
- Improvements compared to HL-LHC often orders of magnitude
- Two interesting ILC summary talks
 - BSM at ILC: <u>19th July 15:04</u> South Hall 1A, M. T. Núñez Pardo De Vera Higgs physics at ILC: <u>18th July 17:53</u> South Hall 2A, A. F. Zarnecki

BACKUP

SMEFT all future colliders

Operator Coefficients