# Can we look for New Physics through $c \rightarrow s \ell \nu$ modes?

Damir Bečirević

Pôle Théorie, IJCLab CNRS et Université Paris-Saclay



based on the work with F. Jaffredo, O. Sumensari, and S. Rosauro-Alcaraz

## Intro

- Common strategy: Measure weak interactions processes to high precision and compare exp to robust/accurate theoretical predictions in order to either fix CKM or to extract couplings to BSM physics
- Nonperturbative QCD stands on the way. LQCD tremendous progress but  $B \rightarrow D^* \ell \nu$  still problematic (3pt fns)
- ★  $c \rightarrow s \ell \nu$  good testing ground [excellent results from BESIII + best environment for LQCD]



cf. also Bolognani et al 2407.06145

CKM Unitarity - V<sub>cs</sub>



From the global fits:

 $|V_{cs}|^{\text{UTFit}} = 0.9735(2)$   $|V_{cs}|^{\text{CKMfitter}} = 0.9735(1)$ 

- Possible checks thanks to charm factory at BESIII
- Leptonic modes are the best suited: QCD 'simple' for lattices
- Recent updates (BESIII 2023):

$$\begin{split} \mathcal{B}(D_s \to \mu\nu) &= 5.29(14) \times 10^{-3} \\ \mathcal{B}(D_s \to \tau\nu) &= 5.44(21)\% \Big|_{\tau \to \pi\nu}, \quad 5.34(19)\% \Big|_{\tau \to \mu\nu\nu} \\ & \text{BESIII, 2303.12600} \\ \end{split}$$

# Checking on V<sub>cs</sub>

From the global fits:

 $|V_{cs}|^{\text{UTFit}} = 0.9735(2)$ 

Hadronic matrix element



 $|V_{cs}|^{\text{CKMfitter}} = 0.9735(1)$  $\langle 0|\bar{c}\gamma_{\mu}\gamma_{5}s|D_{s}(p)\rangle = if_{D_{s}}p_{\mu}$ 

 $f_{D_s} = 249.9(5) \text{ MeV}_{0.2\%!}$ 

FLAG rev, 2111.09849

# Checking on V<sub>cs</sub>

From the global fits:

 $|V_{cs}|^{\text{UTFit}} = 0.9735(2)$ 

Hadronic matrix element



$$|V_{cs}|^{\text{CKMfitter}} = 0.9735(1)$$

$$\langle 0|\bar{c}\gamma_{\mu}\gamma_{5}s|D_{s}(p)\rangle = if_{D_{s}}p_{\mu}$$

$$|V_{cs}|^{\mu} = 0.967(13)$$

$$|V_{cs}|^{\tau_{1}} = 0.993(20)$$

 $|V_{cs}|^{\tau_2} = 0.984(20)$ 

Watch out - soft photons! cf. Frezzotti et al 2306.05904

Cannot match the UT precision unless using detailed semileptonics

# $\mathsf{EFT} \qquad \mathsf{C} \to \mathsf{S} \, \ell \nu$

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= -2\sqrt{2}G_F V_{cs} \Big[ \left( 1 + \boldsymbol{g}_{V_L}^{\boldsymbol{\ell}} \right) \left( \bar{s}_L \gamma_{\mu} c_L \right) \left( \bar{\ell}_L \gamma^{\mu} \nu_L \right) + \boldsymbol{g}_{V_R}^{\boldsymbol{\ell}} \left( \bar{s}_R \gamma_{\mu} c_R \right) \left( \bar{\ell}_L \gamma^{\mu} \nu_L \right) \\ &+ \boldsymbol{g}_{S_L}^{\boldsymbol{\ell}} \left( \bar{s}_R c_L \right) \left( \bar{\ell}_R \nu_L \right) + \boldsymbol{g}_{S_R}^{\boldsymbol{\ell}} \left( \bar{s}_L c_R \right) \left( \bar{\ell}_R \nu_L \right) + \boldsymbol{g}_T^{\boldsymbol{\ell}} \left( \bar{s}_R \sigma_{\mu\nu} c_L \right) \left( \bar{\ell}_R \sigma^{\mu\nu} \nu_L \right) \Big] + \text{h.c.} \end{aligned}$$

# $\mathsf{EFT} \qquad \mathsf{C} \to \mathsf{S} \, \ell \mathsf{v}$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cs} \left[ \left( 1 + g_{V_L}^{\ell} \right) \left( \bar{s}_L \gamma_{\mu} c_L \right) \left( \bar{\ell}_L \gamma^{\mu} \nu_L \right) + g_{V_R}^{\ell} \left( \bar{s}_R \gamma_{\mu} c_R \right) \left( \bar{\ell}_L \gamma^{\mu} \nu_L \right) \right. \\ \left. + g_{S_L}^{\ell} \left( \bar{s}_R c_L \right) \left( \bar{\ell}_R \nu_L \right) + g_{S_R}^{\ell} \left( \bar{s}_L c_R \right) \left( \bar{\ell}_R \nu_L \right) + g_T^{\ell} \left( \bar{s}_R \sigma_{\mu\nu} c_L \right) \left( \bar{\ell}_R \sigma^{\mu\nu} \nu_L \right) \right] + \text{h.c.}$$

$$S-P \qquad S+P \qquad T$$

$$g_{S(P)}^{\ell} = g_{S_R}^{\ell} \pm g_{S_L}^{\ell} \qquad g_{V(A)}^{\ell} = g_{V_R}^{\ell} \pm g_{V_L}^{\ell} \qquad g_T^{\ell} = g_T^{\ell}$$

$$\mathcal{B}\left(D_s \to \ell\nu\right) = \tau_{D_s} \frac{G_F^2 |V_{cs}|^2 f_{D_s}^2 M_{D_s} m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{M_{D_s}^2}\right)^2 \left|1 - g_A^\ell + g_P^\ell \frac{M_{D_s}^2}{m_\ell \left(m_c + m_s\right)}\right|^2$$



??

# Semileptonics - mesons

#### X Mesons:

 $D \to K\ell\nu: \quad \langle K(k)|\bar{c}\gamma_{\mu}s|D(p)\rangle \propto f_{+}(q^{2}), f_{0}(q^{2}) \quad \langle K(k)|\bar{c}\gamma_{\mu}\gamma_{5}s|D(p)\rangle = 0 \quad \langle K(k)|\bar{c}\sigma_{\mu\nu}s|D(p)\rangle \propto f_{T}(q^{2})$ 

 $D \to K^* \ell \nu : \langle K^*(k) | V_\mu | D(p) \rangle \propto V(q^2) \langle K^*(k) | A_\mu | D(p) \rangle \propto A_1(q^2), A_2(q^2), A_0(q^2)$ 

 $\langle K^*(k)|T_{\mu\nu}|D(p)\rangle \propto T_1(q^2), T_2(q^2), T_3(q^2)$ 

and similarly for  $D_s \rightarrow \phi \ell \nu$ 

- Seudoscalar in the final state easier for lattices
- We focus on the electron modes [more precise] LFUV tests ( $\mu$ /e) successful so far (cf. PDG)

or recent BESIII 2306.02624 v 2207.14149

## Semileptonics - mesons (LQCD)

#### Mesons:

 $D \to K\ell\nu: \quad \langle K(k)|\bar{c}\gamma_{\mu}s|D(p)\rangle \propto f_{+}(q^{2}), f_{0}(q^{2}) \quad \langle K(k)|\bar{c}\gamma_{\mu}\gamma_{5}s|D(p)\rangle = 0 \quad \langle K(k)|\bar{c}\sigma_{\mu\nu}s|D(p)\rangle \propto f_{T}(q^{2})$ 



## Semileptonics - mesons (LQCD)

#### Mesons:

 $D \to K\ell\nu: \quad \langle K(k)|\bar{c}\gamma_{\mu}s|D(p)\rangle \propto f_{+}(q^{2}), f_{0}(q^{2}) \quad \langle K(k)|\bar{c}\gamma_{\mu}\gamma_{5}s|D(p)\rangle = 0 \quad \langle K(k)|\bar{c}\sigma_{\mu\nu}s|D(p)\rangle \propto f_{T}(q^{2})$ 



More work needed to understand the differences (lattice artefacts)

## Semileptonics - mesons (LQCD)

#### X Mesons:

 $D_s \to \phi \ell \nu : \quad \langle \phi(k) | V_\mu | D_s(p) \rangle \propto V(q^2) \quad \langle \phi(k) | A_\mu | D_s(p) \rangle \propto A_1(q^2), A_2(q^2), A_0(q^2)$ 

 $\langle \phi(k) | T_{\mu\nu} | D_s(p) \rangle \propto T_1(q^2), T_2(q^2), T_3(q^2)$ 



### Semileptonics - experiment (ang. distr.)

$$\frac{\mathrm{d}^{2}\Gamma_{\lambda}^{\lambda_{\ell}}}{\mathrm{d}q^{2}\mathrm{d}\cos\theta} = a_{\lambda}^{\lambda_{\ell}}(q^{2}) + b_{\lambda}^{\lambda_{\ell}}(q^{2})\cos\theta + c_{\lambda}^{\lambda_{\ell}}(q^{2})\cos^{2}\theta$$

Functions of kinematic variables, q<sup>2</sup>-dependent form factors and NP couplings

- 3 observables even for PS meson in the final state (can this be done exply?)
- using secondary decay of V meson in the final state (bunch of observables)
- baryons very useful too

 $\Lambda_c \to \Lambda\ell\nu: \quad \langle \Lambda(k) | V_\mu | \Lambda_c(p) \rangle \propto f_\perp(q^2), f_+(q^2), f_0(q^2) \quad \langle \Lambda(k) | A_\mu | \Lambda_c(p) \rangle \propto g_\perp(q^2), g_+(q^2), g_0(q^2)$ 

 $\langle \Lambda(k)|T_{\mu\nu}|\Lambda_c(p)\rangle \propto h_{\perp}(q^2), h_{+}(q^2), h_{0}(q^2), \widetilde{h}_{\perp}(q^2), \widetilde{h}_{+}(q^2)$ 

A detailed lattice study: Meinel 1611.09696

# BESIII $\Lambda_c \rightarrow \Lambda(\rightarrow p\pi) e\nu$

$$\frac{\mathrm{d}^{4}\Gamma^{\lambda_{\ell}}}{\mathrm{d}q^{2}\mathrm{d}\cos\theta\mathrm{d}\cos\theta_{\Lambda}\mathrm{d}\phi} = A_{1}^{\lambda_{\ell}} + A_{2}^{\lambda_{\ell}}\cos\theta_{\Lambda} + \left(B_{1}^{\lambda_{\ell}} + B_{2}^{\lambda_{\ell}}\cos\theta_{\Lambda}\right)\cos\theta + \left(C_{1}^{\lambda_{\ell}} + C_{2}^{\lambda_{\ell}}\cos\theta_{\Lambda}\right)\cos^{2}\theta \\ + \left(D_{3}^{\lambda_{\ell}}\sin\theta_{\Lambda}\cos\phi + D_{4}^{\lambda_{\ell}}\sin\theta_{\Lambda}\sin\phi\right)\sin\theta + \frac{1}{2}\left(E_{3}^{\lambda_{\ell}}\sin\theta_{\Lambda}\cos\phi + E_{4}^{\lambda_{\ell}}\sin\theta_{\Lambda}\sin\phi\right)\sin2\theta$$

Invert the angular coefficients [exp] to extract the FF and compare to LQCD

# BESIII $\Lambda_c \rightarrow \Lambda(\rightarrow p\pi) e\nu$

$$\frac{\mathrm{d}^4\Gamma^{\lambda_\ell}}{\mathrm{d}q^2\mathrm{d}\cos\theta\mathrm{d}\cos\theta_{\Lambda}\mathrm{d}\phi} = A_1^{\lambda_\ell} + A_2^{\lambda_\ell}\cos\theta_{\Lambda} + \left(B_1^{\lambda_\ell} + B_2^{\lambda_\ell}\cos\theta_{\Lambda}\right)\cos\theta + \left(C_1^{\lambda_\ell} + C_2^{\lambda_\ell}\cos\theta_{\Lambda}\right)\cos^2\theta \\ + \left(D_3^{\lambda_\ell}\sin\theta_{\Lambda}\cos\phi + D_4^{\lambda_\ell}\sin\theta_{\Lambda}\sin\phi\right)\sin\theta + \frac{1}{2}\left(E_3^{\lambda_\ell}\sin\theta_{\Lambda}\cos\phi + E_4^{\lambda_\ell}\sin\theta_{\Lambda}\sin\phi\right)\sin2\theta$$

Invert the angular coefficients to extract the FF and compare to LQCD





## In terms of $\Lambda_c \rightarrow \Lambda(\rightarrow p\pi) e\nu$ observables



$$\frac{{}^{2}\Gamma_{\lambda}^{\lambda_{\ell}}}{\mathrm{d}\cos\theta} = a_{\lambda}^{\lambda_{\ell}}(q^{2}) + b_{\lambda}^{\lambda_{\ell}}(q^{2})\cos\theta + c_{\lambda}^{\lambda_{\ell}}(q^{2})\cos^{2}\theta$$

### In terms of $\Lambda_c \rightarrow \Lambda(\rightarrow p\pi) e\nu$ observables



#### In terms of $\Lambda_c \rightarrow \Lambda_e \nu$ observables



## In terms of $\Lambda_c \rightarrow \Lambda(\rightarrow p\pi) e\nu$ observables



NB: No info on q<sup>2</sup>-binned data! Only on the same [correlated] parameters of the FF parametrization used in the LQCD paper [1611.09696]

Integrated characteristics quite consistent with SM...

#### One interesting case...



## Try and feed in NP contributions

Include mesons too (where info on binned distribution is available)...



Checking on presence of coupling to RH current

# Try and feed in NP contributions



Notice the benefit of the binned distribution in  $D \rightarrow K e \nu \langle dB/dq^2 \rangle$ 

In the scenarios with  $S_1$  or  $R_2$  SLQ

$$g_{S_L} = \pm 4 \ g_T \qquad \xrightarrow{\Lambda_{\rm NP} \to 2 \ {
m GeV}} g_{S_L} \simeq \pm 11.2 \ g_T$$

### LHC window to high-p<sub>T</sub> tails of...

$$\sigma(pp \to \ell\nu) = \int_0^1 x_1 x_2 f_{\bar{s}}(x_1, \mu) f_c(x_2, \mu) \,\hat{\sigma}(\bar{s}c \to \ell\nu) + (\bar{s} \leftrightarrow c)$$

So stringent for  $\ell$ =e that reconsidering K-factor becomes indispensable

Camalich et al 2003.12421, Allwicher et al 2207.10714





### LHC window to high-p<sub>T</sub> tails of...

$$\sigma(pp \to \ell\nu) = \int_0^1 x_1 x_2 f_{\bar{s}}(x_1, \mu) f_c(x_2, \mu) \,\hat{\sigma}(\bar{s}c \to \ell\nu) + (\bar{s} \leftrightarrow c)$$

So stringent for  $\ell$ =e that reconsidering K-factor becomes indispensable

Camalich et al 2003.12421, Allwicher et al 2207.10714



# **CONCLUDING REMARKS**

- Testing the strategy to extract NP couplings from low energy data
- LQCD control over the SL meson form factors is not fully satisfactory
- Another LQCD estimates of  $D_s \rightarrow \phi \,\ell \nu$  and  $\Lambda_c \rightarrow \Lambda \,\ell \nu$  form factors needed
- Exp info on the q<sup>2</sup>-binned distributions of angular observables would be very welcome too
- LHC info on high-p<sub>T</sub> tails of DY lead to very stringent constraints on NP couplings

K-factor should be scrutinized but even if  $K \approx 2$ , there is very little room for NP in channels with e or  $\mu$  in the final state

- If there are no NP contributions to  $c \rightarrow s e \nu$  or they are indeed tiny, this is becoming a LQCD laboratory: form factor normalizations and shapes
- That could be an important 1<sup>st</sup> step to solving the  $B \rightarrow D^* \ell \nu$  form factor [LQCD] ambiguity/problem/discrepancy

