# Flavour and $\tau$ physics at the FCC-ee

# Aidan Wiederhold On behalf of the FCC Phys. & Exp. & Dets Flavour group



University of Manchester, United Kingdom

> ICHEP 2024, Prague, Czechia

18th July 2024



### Topics

- The FCC-ee and the IDEA detector
- Phenomenology and detector requirements
  - Focusing on:

• 
$$V_{cb} \& V_{ub}$$
•  $b \rightarrow s\tau^+\tau^-$ 
•  $b \rightarrow s\nu\bar{\nu}$ 

European Committee for Future Accelerators (ECFA) focus topics

•  $\tau^{\pm}$  decays

#### The FCC-ee

- 91 km circumference
- 4 collision points
- 16 years operation
- Plan to operate at a number of energy levels;  $Z^0$ -pole,  $W^+W^-$ ,  $Z^0H$ ,  $t\bar{t}$
- I will primarily cover the latest  $Z^0$ -pole prospects



#### The FCC-ee

- $Z^0$ -pole run will deliver  $6 \times 10^{12} \, Z^0$ s in total
  - "LEP in a minute"
- $W^+W^-$  run will deliver  $2.4 \times 10^8~W^\pm$  pairs in total
- Almost a "best of both worlds" scenario compared to Belle II and LHCb
- We must determine what kind of detectors we need...

| Attribute                         | $\Upsilon(4S)$ | pp | $Z^0$          |
|-----------------------------------|----------------|----|----------------|
| All hadron species                |                | 1  | <b>√</b>       |
| High boost                        |                | ✓  | 1              |
| Enormous production cross-section |                | ✓  |                |
| Negligible trigger losses         | ✓              |    | ✓              |
| Low backgrounds                   | ✓              |    | ✓              |
| Initial energy constraint         | ✓              |    | $(\checkmark)$ |

Advantageous properties of Belle II ( $\Upsilon(4S)$ ), LHC (pp) and FCC-ee  $(Z^0)$  [arxiv:2106.01259]

#### The IDEA detector

- One of the candidates for a future detector design
- Plenty development activity over the past few years
  - See talks at the FCC weeks and ECFA meetings
- Need to marry this work by detector experts with the physics requirements



Quarter cross-section of the IDEA design

# $V_{ub}$ and $V_{cb}$

Crucial inputs for constraining new physics from rare meson decays and meson mixing - the largest source of uncertainty

Systematic uncertainties will eventually dominate the semileptonic  $V_{ch}$  measurements



Can we improve on this?

#### $V_{ch}$ from on-shell $W^{\pm}$ decays

- Independent of the semileptonic measurements
- Independent of Lattice QCD inputs

==> improved precision

• For  $10^8~W^\pm$  pairs  $\,\sim 0.14\,\%$  relative uncertainty



with perfect jet flavour tagging

|                  | b   | С   | uds |
|------------------|-----|-----|-----|
| Eff b-jet tagger | 25% |     |     |
| Eff c-jet tagger | 10% | 50% | 2%  |

Numbers inspired by:

ILD@ILC
Tracking and Vertexing at Future Linear Colliders:
Applications in Flavour Tagging
Tomohiko Tanabe (U Tokyo)
IAS Program on High Energy Physics 2017, HKUST

 $\sim 0.4 \%$  relative uncertainty

Marie-Hélène Schune: 3rd FCC Workshop 2020

Can even be slightly more optimistic given there may be twice as many  $W^\pm$  pairs in the nominal running plan

### $V_{ch}$ from on-shell $W^{\pm}$ decays

- Independent of the semileptonic measurements
- Independent of Lattice QCD inputs
  - ⇒ improved precision
- For  $10^8\,W^\pm$  pairs  $\sim 0.14\,\%$  relative uncertainty with perfect jet flavour tagging
- Will need to calibrate with data the main challenge



|                  | b     | C   | uds |
|------------------|-------|-----|-----|
| Eff b-jet tagger | 25./0 |     |     |
| Eff c-jet tagger | 10%   | 50% | 2%  |
|                  |       |     |     |

|                  | b    | С   | uds   |
|------------------|------|-----|-------|
| Eff b-jet tagger | 87%  |     |       |
| Eff c-jet tagger | 100% | 65% | 0.01% |

~ 0.15 % relative uncertainty

Update based on FCC performance study [Michele Selvaggi: FCC Week June 2023]

Can even be slightly more optimistic given there may be twice as many  $W^\pm$  pairs in the nominal running plan

- Independent clean probes of  $V_{ub}$  and  $V_{cb}$ 
  - May help resolve the tension between exclusive and inclusive measurements
- Can also probe various NP models
  - Charged Higgs
  - Scalar leptoquarks
  - Vector leptoquarks







Feynman diagrams for tree-level contributions from: charged Higgs (left), scalar leptoquarks (middle) and vector leptoquarks (right)

$$B_{(c)}^+ \to \tau^+ \nu_{\tau}$$

- Reconstruct  $\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$  decay
- Decay topology split into high- and low-energy hemispheres
- 2-stage BDT selection: Hemisphere properties followed by candidate properties
- Determine ideal and pessimistic BF uncertainties
  - 2% and 4% respectively



Tag hemisphere



Comparison between current determinations of  $|V_{ub}|$  and predicted determinations from Belle II and FCC-ee, where the FCC-ee values correspond to 2% and 4% uncertainty on  $\mathcal{B}(B^+ \to \tau^+ \nu_\tau)$ . Different central values are taken from the current Exclusive, Global and  $B^+ \to \tau^+ \nu_\tau$  values.

This study assumes  $5 \times 10^{12} \, Z^0$ s so we could actually push it a little further!

#### $b \rightarrow s \nu \bar{\nu}$ motivation

- Impossible at LHCb
- Belle II cannot do all B flavours
- Yet to be observed, besides evidence for  $B^+ \to K^+ \nu \bar{\nu}$ 
  - 2.7σ tension with SM [arxiv:2311.14647]
- Theoretically cleaner than the corresponding  $b \rightarrow sl^+l^-$ 
  - No long-distance charm loops!
- Can be used to extract the CKM factor and hadronic form factors, and constrain Wilson coefficients
- Novel probes of CPV from new physics [arxiv:2208.10880]

| Decay                                               | B-factories | FCC-ee   |
|-----------------------------------------------------|-------------|----------|
| $B^+ \to K^+ \nu \overline{\nu}$                    | <b>✓</b>    | <b>✓</b> |
| $B^+ \to K^{*+} \nu \overline{\nu}$                 |             | <b>✓</b> |
| $B^0	o K^0_{ m S} u\overline{ u}$                   |             | <b>✓</b> |
| $B^0 	o K^{*0}  u \overline{ u}$                    |             | <b>✓</b> |
| $B_s^0 	o \phi  u \overline{ u}$                    | X           | <b>✓</b> |
| $\Lambda_b^0 \to \Lambda^{(*)0} \nu \overline{\nu}$ | X           | <b>✓</b> |

 ${\it B}$  decays accessible by B-factories and FCC-ee





Plot of the maximum likelihood fit for  $B^+ \to K^+ \nu \bar{\nu}$  from inclusive tagging



#### $b \rightarrow s \nu \bar{\nu}$ BF sensitivity

- Belle II expects  $\mathcal{O}(10\%)$  uncertainty on  $\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})$  with 50 ab<sup>-1</sup>
  - Let's see where they go with  $B^+ \to K^+ \nu \bar{\nu} \dots$
- Follow a similar analysis procedure to  $B_{(c)} \to \tau^+ \nu_\tau$
- FCC-ee assuming perfect vertex seeding and PID:
  - $\mathcal{O}(1\%)$  uncertainty for  $B^0 \to K^{*0} \nu \bar{\nu} \ \& \ B_s^0 \to \phi \nu \bar{\nu}$
  - $\mathcal{O}(3\%)$  uncertainty for  $B^0 \to K_S^0 \nu \bar{\nu}$
  - $\mathcal{O}(10\%)$  uncertainty for  $\Lambda_b^0 \to \Lambda^0 \nu \bar{\nu}$





Sensitivity estimate plots for a range of BFs of  $B^0 \to K^{*0} \nu \bar{\nu}$  (top) &  $B_s^0 \to \phi \nu \bar{\nu}$  (bottom)

#### $b \rightarrow s \nu \bar{\nu}$ detector requirements

- Robust against  $\pi K$  mis-ID with at least  $\sim 2\sigma$  separation
- Require  $\leq 0.2$ mm vertex resolution
  - Well above the expected resolution  $\mathcal{O}(10\mu\mathrm{m})$
- More detailed studies in the future to evaluate the full detector requirements



### $B^0 \to K^{*0} \tau^+ \tau^-$

- Yet to be observed  $\mathcal{O}(10^{-7})$  BF
  - Current limit  $\mathcal{O}(10^{-4}) \mathcal{O}(10^{-3})$
- Many NP models expect NP to couple primarily to the Higgs and the third generation <u>Ben Stefanek</u>: 2nd <u>ECFA Workshop 2023</u>
- Focus again on the the 3-prong  $\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}$  decay
- Use energy-momentum conservation to resolve  $\nu$  kinematics
- BDT trained with candidate kinematics to reduce backgrounds
- Signal yield extracted with an unbinned ML fit to the candidate B mass



Schematic of the signal decay



 $B^0$  candidate invariant mass fit to rescaled signal and background MC

### $B^0 \to K^{*0} \tau^+ \tau^-$ sensitivity

- Current FCC-ee and IDEA would not allow for discovery of this mode
  - Trying to play with detector performance  $\implies 3.5\sigma$
- Clearly some work to do!
  - Better vertexing?
    - Easier said than done
  - Higher luminosity/longer run period?
    - Difficult/competition with other runs
  - Consider other  $\tau$  decays?
    - Leptonics harder to handle but would produce  $\mathcal{O}(10)$  times the data



Dependence of the relative signal yield uncertainty on the vertex resolution of the IDEA detector

- $\sim 10^{11}~Z \rightarrow \tau^+\tau^-$  at the FCC-ee
- $m_{\tau}$  is a SM parameter must push experimental sensitivity as far as possible
  - Required for many SM predictions
    - Charged weak currents
    - CKM elements
  - Enters LFU tests at the fifth power
    - LFV searches complement that of  $\mu$
- Can also directly measure lifetime and BFs (extract  $\alpha_s(m_\tau)$ )
- au coupling  $\implies 
  u_{ au}$  coupling link to oscillations and LFV, probe orders of magnitude better than current experiments [arXiv:1612.02728, arXiv:2203.05502v2, arXiv:2203.06520]

Alberto Lusiani: FCC Week 2023

## $m_{\tau}$ systematics

- A recent Belle II analysis, <u>arxiv:2305.19116</u>, gives the most precise measurement  $m_\tau = 1777.09 \pm 0.08 \text{(stat.)} \pm 0.11 \text{(syst.)} \text{ MeV}/c^2$
- Systematically limited
  - Knowledge of the beam energy
  - Momentum corrections due to scale factor dependence on  $\ensuremath{p_{T}}$
- FCC-ee should be able to significantly reduce these effects
  - Beam energy should be known to within 1ppm
  - ~2ppm momentum scale calibration should be possible using  $m_{\mathrm{j/\psi}}$
- Baseline IDEA should be sufficient to obtain 14ppm measurement of  $\sigma_{m_\tau} \sim 0.02~{\rm MeV/}c^2$

| Source                                     | Uncertainty                    |
|--------------------------------------------|--------------------------------|
|                                            | $\lceil \text{MeV}/c^2 \rceil$ |
|                                            |                                |
| Knowledge of the colliding beams:          |                                |
| Beam-energy correction                     | 0.07                           |
| Boost vector                               | < 0.01                         |
| Reconstruction of charged particles:       |                                |
| Charged-particle momentum correction       | 0.06                           |
| Detector misalignment                      | 0.03                           |
| Fit model:                                 |                                |
| Estimator bias                             | 0.03                           |
| Choice of the fit function                 | 0.02                           |
| Mass dependence of the bias                | < 0.01                         |
| Imperfections of the simulation:           |                                |
| Detector material density                  | 0.03                           |
| Modeling of ISR, FSR and $\tau$ decay      | 0.02                           |
| Neutral particle reconstruction efficiency | $\leq 0.01$                    |
| Momentum resolution                        | < 0.01                         |
| Tracking efficiency correction             | < 0.01                         |
| Trigger efficiency                         | < 0.01                         |
| Background processes                       | < 0.01                         |
| Total                                      | 0.11                           |
|                                            |                                |

Systematic uncertainties in the Belle II  $m_{\tau}$  measurement  $\underline{\text{arxiv:}2305.19116}$ 

#### $\tau^{\pm}$ lifetime and BFs

- FCC-ee should provide the most precise measurements of  $\tau$  lifetimes and BFs
- For lifetime
  - Impact parameter is  $\sim 70~\mu\mathrm{m}$ , much greater than the FCC IP resolution and beam spot size
  - Uncertainty on the average length scale of vertex detector elements  $\leq 4.8$  ppm
- For BFs
  - Good EM energy resolution,  $<20\,\%\,/\sqrt{E({\rm GeV})}$  (LEP)
  - Granular EM calorimeter  $> 15 \times 15 \text{ mrad}^2$  (LEP)





2010

2020

2030

Should temper expectations a little as these plots assume  $8 \times 10^{12} \, Z^0 \mathrm{s}$ 

2050

2060

FCC-ee(Z) 95% CL

2040

#### That's not all...

- Obviously there is much more flavour physics to explore in the future
  - CKM measurements the "flattest" unitarity triangle arxiv:2402.09987
  - Lepton flavour violation, e.g.  $e^+e^- \rightarrow \tau^{\pm}\mu^{\mp}$  arxiv:2305.03869
  - Lepton number violation and heavy neutral leptons <u>Stefan Antusch: 2nd ECFA</u> Workshop 2023, <u>Jürgen Reuter: 2nd ECFA Workshop 2023</u>
  - t flavour changing neutral currents arxiv:1904.10956
- We need to do our best to ensure we build something that lets us do as much as possible — What would you want to do that current experiments cannot?
  - More ideas are welcome
  - And more people to do studies!

### Summary

- CKM measurements far more precise than possible at current experiments
- Can perform extensive studies of (semi-)invisible final states
  - Impossible at LHCb due to missing energy
  - Possible at Belle II but limited to  $\sigma_{\mathcal{B}} \sim \mathcal{O}(10\%)$  and  $B^0, B^+$
  - FCC-ee should get  $\sigma_{\mathcal{B}} \sim \mathcal{O}(1\%)$  BF measurements
- Can push  $au^\pm$  measurements further
  - Difficult at LHCb
  - Limited at Belle II by sample size, species and systematics
  - $\sigma_{m_{\tau}} \sim 14$ ppm,  $\sigma_{\tau_{\tau}} \sim 12$ ppm,
- More papers on the way focus on detailed detector requirements increasing!
- More ideas and collaborators are welcome!

GitHub: FCCeePhysicsPerformance

# Backup

#### $B_{(c)} \to \tau^+ \nu_{\tau}$ : analysis and leptoquarks

- Subsequent  $\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$  decay
- Decay topology split into high- and low-energy hemispheres
- 2-stage BDT selection: Hemisphere properties followed by candidate properties
- First stage BDT trained with hemisphere properties of signal and inclusive background MC
  - Total energy, charged energy, neutral energy, multiplicities, number of tracks, etc...
- Second stage BDT trained with the candidate properties
  - Mass, vertex  $\chi^2$ , momentum, impact parameters...
- Signal yield determined by a fit to the maximum hemisphere energy



- Grey shade is the exclusion by current results
- Green hash is the exclusion expected for HL-LHC
- Grey hash is the exclusion by FCC-ee (the thin annulus survives)
- Blue shades are  $1\sigma, 2\sigma, 3\sigma$  bands from current  $b \to c$  anomalies