KOLYA AND NEW RESULTS ON INCLUSIVE V_{CB} Matteo Fael (CERN)

ICHEP - Prague - July 19th 2024

with F. Bernlochner, I. Milutin, M. Prim, K. Vos

Funded by the European Union

EXTRACTION OF $|V_{cb}|$ from inclusive $\overline{B} \to X_c l \overline{\nu}_l$

- $O = E_{\ell}$: energy of the charged lepton in the *B* rest frame
- $O = M_X^2$: hadronic invariant mass
- $O = q^2$: leptonic invariant mass

Observables

- Total rate $\Gamma_{sl} = \Gamma(B \to X_c \ell \bar{\nu}_{\ell})$
- Moments of the differential distribution of an observables O

$$\langle (O)^n \rangle_{\text{cut}} = \int_{\text{cut}} (O)^n \frac{\mathrm{d}\Gamma}{\mathrm{d}O} \,\mathrm{d}O \, \left/ \int_{\text{cut}} \frac{\mathrm{d}\Gamma}{\mathrm{d}O} \,\mathrm{d}O \right|_{\text{cut}}$$

HEAVY QUARK EXPANSION

Double series expansion in the strong coupling constant α_s and power suppressed terms $\Lambda_{\rm QCD}/m_b$

• Total rate
$$\Gamma_{sl} = \frac{G_F^2 m_b^5 A_{ew}}{192\pi^3} |V_{cb}|^2 \left[\left(1 - \frac{\mu_{\pi}^2}{2m_b^2} \right) \left(X_0(\rho) + \frac{\alpha_s}{\pi} X_1(\rho) + \left(\frac{\alpha_s}{\pi} \right)^2 X_2(\rho) + \left(\frac{\alpha_s}{\pi} \right)^3 X_3(\rho) + \dots \right) \right. \\ \left. + \left(\frac{\mu_G^2}{m_b^2} - \frac{\rho_D^3}{m_b^3} \right) \left(g_0(\rho) + \frac{\alpha_s}{\pi} g_1(\rho) + \dots \right) + \frac{\rho_D^3}{m_b^3} \left(d_0(\rho) + \frac{\alpha_s}{\pi} d_1(\rho) + \dots \right) + O\left(\frac{1}{m_b^4} \right) \right]$$

Moments of differential distribution

$$\langle O^n \rangle_{\text{cut}} = (m_b)^{mn} \left[X_0^{(O,n)} + \frac{\alpha_s}{\pi} X_1^{(O,n)} + \left(\frac{\alpha_s}{\pi}\right)^2 X_2^{(O,n)} + \frac{\mu_{\pi}^2}{m_b^2} \left(p_0^{(O,n)} + \frac{\alpha_s}{\pi} p_1^{(O,n)} + \dots \right) + \frac{\mu_{G}^2}{m_b^2} \left(g_0^{(O,n)} + \frac{\alpha_s}{\pi} g_1^{(O,n)} + \dots \right) + \frac{\rho_D^3}{m_b^3} \left(d_0^{(O,n)} + \frac{\alpha_s}{\pi} d_1^{(O,n)} + \dots \right) + \frac{\rho_{LS}}{m_b^2} \left(l_0^{(O,n)} + \frac{\alpha_s}{\pi} l_1^{(O,n)} + \dots \right) + O\left(\frac{1}{m_b^4}\right) \right]$$

M. Fael | ICHEP 2024 | Prague | July 19th 2024

EXPERIMENTAL STATUS

Experiment	Hadron moments <m<sup>n_X></m<sup>	Lepton moments <e<sup>nl></e<sup>	References
BaBar	n=2 c=0.9,1.1,1.3,1.5 n=4 c=0.8,1.0,1.2,1.4 n=6 c=0.9,1.3 [1]	n=0 c=0.6,1.2,1.5 n=1 c=0.6,0.8,1.0,1.2,1.5 n=2 c=0.6,1.0,1.5 n=3 c=0.8,1.2 [1,2]	[<u>1] Phys.Rev. D81 (2010) 032003</u> [<u>2] Phys.Rev. D69 (2004) 111104</u>
Belle	n=2 c=0.7,1.1,1.3,1.5 n=4 c=0.7,0.9,1.3 [3]	n=0 c=0.6,1.4 n=1 c=1.0,1.4 n=2 c=0.6,1.4 n=3 c=0.8,1.2 [4]	[<u>3] Phys.Rev. D75 (2007) 032005</u> [<u>4] Phys.Rev. D75 (2007) 032001</u>
CDF	n=2 c=0.7 n=4 c=0.7 [5]	•	[5] Phys.Rev. D71 (2005) 051103
CLEO	n=2 c=1.0,1.5 n=4 c=1.0,1.5 [6]	•	[<u>6] Phys.Rev. D70 (2004) 032002</u>
DELPHI	n=2 c=0.0 n=4 c=0.0 n=6 c=0.0 [7]	n=1 c=0.0 n=2 c=0.0 n=3 c=0.0 [7]	[7] Eur.Phys.J. C45 (2006) 35-59

> new Belle II measurements of q^2 moments

Belle, Phys. Rev. D 104, 112011 (2022) Belle II, Phys. Rev. D 107, 072002 (2023)

$$|V_{cb}|^{E_l, M_X, q^2} = (41.97 \pm 0.49) \times 10^{-3}$$

Gambino, Finauri, JHEP 02 (2024) 206

 $|V_{cb}|^{q^2} = (41.69 \pm 0.63) \times 10^{-3}$

Bernlochner, **MF**, Olschewsky, Persson van Tonder, Vos, Welsch *JHEP* 10 (2022) 068

M. Fael | ICHEP 2024 | Prague | July 19th 2024

MF, Prim, Vos, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

Independent sets of data

Difference mainly driven by the $Br(B \rightarrow X_c l \bar{\nu}_l)$ average

► We need new $\operatorname{Br}(B \to X_c l \bar{\nu}_l)$ measurements to improve.

	$\mathcal{B}(B \to X \ell \bar{\nu}_{\ell}) \ (\%)$	$\mathcal{B}(B \to X_c \ell \bar{\nu}_\ell) \ (\%)$	In Av
Belle [63] $E_{\ell} > 0.6 \mathrm{GeV}$	-	10.54 ± 0.31	\checkmark
Belle 63 $E_{\ell} > 0.4 \mathrm{GeV}$	-	10.58 ± 0.32	
CLEO $[65]$ incl.	10.91 ± 0.26	10.72 ± 0.26	
CLEO [65] $E_{\ell} > 0.6$	10.69 ± 0.25	10.50 ± 0.25	\checkmark
BaBar [62] incl.	10.34 ± 0.26	10.15 ± 0.26	\checkmark
BaBar SL [64] $E_{\ell} > 0.6 \mathrm{GeV}$	-	10.68 ± 0.24	\checkmark
Our Average	-	10.48 ± 0.13	
Average Belle [63] & BaBar [64]	-	10.63 ± 0.19	
$(E_\ell > 0.6 \mathrm{GeV})$			

EXPERIMENTAL PERSPECTIVES

Proposed analysis @ Belle II

2023 Belle II physics week https://indico.belle2.org/event/9402/overview

- Redo spectral moment measurements of and E_1 moments in a single analysis.
- Very valuable to capture the full experimental correlations.
- $\blacktriangleright A_{FB}$ & other differential measurements (q^2 , M_X^2 , and E_1 moments for forward and backward events)
- ► Measurements w/ and w/o QED FSR corrections

$$q^2$$
, M_X^2 ,

comprehensive open-source framework where all available corrections in the HQE are implemented and validated.

INCLUSIVE DECAYS: OPEN-SOURCE LIBRARY MF, Milutin, Vos, hep-ph/2407.XXXX

Open-source library in python: **KOLYA**

https://gitlab.com/vcb-inclusive/kolya

- Prediction in the HQE for
 - $\Gamma_{\rm sl}$ and $\Delta\Gamma_{\rm sl}(E_{\rm cut})$
 - Centralised moments $\langle E_{\ell} \rangle_{E_{\text{cut}}}$, $\langle M_X^2 \rangle_{E_{\text{cut}}}$
 - Centralised moments $\langle q^2 \rangle_{q_{cur}^2}$

• Use the kinetic scheme

Bigi, Shifman, Uraltsev, Vainshtein, Phys. Rev. D 56 (1997) 4017 Czarnecki, Melnikov, Uraltsev, Phys.Rev.Lett. 80 (1998) 3189 MF, Schönwald, Steinhauser, Phys. Rev. Lett. 125 (2020) 052003

• Interface to CRunDec for automatic α_{s} , $m_b^{\rm kin}$ and \overline{m}_c RGE evolution

Chetyrkin, Kuhn, Steinhauser, Comput. Phys. Commun. 133 (2000) 43 Schmidt, Steinhauser, Comput. Phys. Commun. 183 (2012) 1845 Herren, Steinhauser, Comput. Phys. Commun. 224 (2018) 333

HEAVY QUARK EXPANSION

Double series expansion in the strong coupling constant α_s and power suppressed terms $\Lambda_{\rm QCD}/m_b$

• Total rate
$$\Gamma_{sl} = \frac{G_F^2 m_b^5 A_{ew}}{192\pi^3} |V_{cb}|^2 \left[\left(1 - \frac{\mu_{\pi}^2}{2m_b^2} \right) \left(X_0(\rho) + \frac{\alpha_s}{\pi} X_1(\rho) + \left(\frac{\alpha_s}{\pi} \right)^2 X_2(\rho) + \left(\frac{\alpha_s}{\pi} \right)^3 X_3(\rho) + \dots \right) \right. \\ \left. + \left(\frac{\mu_G^2}{m_b^2} - \frac{\rho_D^3}{m_b^3} \right) \left(g_0(\rho) + \frac{\alpha_s}{\pi} g_1(\rho) + \dots \right) + \frac{\rho_D^3}{m_b^3} \left(d_0(\rho) + \frac{\alpha_s}{\pi} d_1(\rho) + \dots \right) + O\left(\frac{1}{m_b^4} \right) \right]$$

Moments of differential distribution

$$\langle O^n \rangle_{\text{cut}} = (m_b)^{mn} \left[X_0^{(O,n)} + \frac{\alpha_s}{\pi} X_1^{(O,n)} + \left(\frac{\alpha_s}{\pi}\right)^2 X_2^{(O,n)} + \frac{\mu_{\pi}^2}{m_b^2} \left(p_0^{(O,n)} + \frac{\alpha_s}{\pi} p_1^{(O,n)} + \dots \right) + \frac{\mu_{G}^2}{m_b^2} \left(g_0^{(O,n)} + \frac{\alpha_s}{\pi} g_1^{(O,n)} + \dots \right) + \frac{\rho_D^3}{m_b^3} \left(d_0^{(O,n)} + \frac{\alpha_s}{\pi} d_1^{(O,n)} + \dots \right) + \frac{\rho_{LS}}{m_b^2} \left(l_0^{(O,n)} + \frac{\alpha_s}{\pi} l_1^{(O,n)} + \dots \right) + O\left(\frac{1}{m_b^4}\right) \right]$$

M. Fael | ICHEP 2024 | Prague | July 19th 2024

BUILDING BLOCKS IN THE HQE

complete references in backup slides

M. Fael | ICHEP 2024 | Prague | July 19th 2024

talk by I. Milutin

Power up to $1/m_b^5$

Perturbative corrections to $\Gamma_{\rm sl}$ up to $O(\alpha_s^3)$

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 016003, JHEP 08 (2022) 039

NLO corrections to power suppressed terms for q^2 moments

Mannel, Moreno, Pivovarov, JHEP 08 (2020) 089

NNLO corrections to q^2 moments

MF, Herren, JHEP 05 (2024) 287

IMPLEMENTATION

- Tree level implemented in exact form
- ► We implement analytic results for higher QCD corrections for $\Gamma_{\rm sl}$
 - Exact results at NLO
 - Asymptotic expansions at NNLO and N3LO
- Use Numba for fast numerical evaluation

https://numba.pydata.org

 $\rho = m_c/m_b \quad \hat{q}^2 = q^2/m_b^2$

Chebyshev interpolation grids for QCD corrections to the moments

$$f(\rho, \hat{q}_{\text{cut}}^2) = \int_{q^2 > q_{\text{cut}}^2} (q^2)^i (q_0)^j \frac{d^3 \Gamma^{\text{NLO}}}{dq^2 dq_0 dE_l} dq^2 dq$$

SEMILEPTONIC INCLUSIVE DECAYS: NP EFFECTS MF, Rahimi, Vos, JHEP 02 (2023) 086

> We include also effects of heavy NP parametrised in terms of dimension-six operators:

$$\mathscr{H}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + C_{V_L} \right) \mathscr{O}_{V_L} + \sum_{i=V_R, S_L, S_I} \right]$$

► Contribution to the moments of $B \to X_c l \bar{\nu}_l$

$$\langle O \rangle = \xi_{\rm SM} + |C_{V_R}|^2 \xi_{\rm NP}^{\langle V_R, V_R \rangle} + |C_{V_R}|^2 \xi_{\rm NP}^{\langle V_L, V_R \rangle} + Re((C_{V_L} - 1)C_{V_R}^*) \xi_{\rm NP}^{\langle V_L, V_R \rangle} + Re(C_{S_R}C_T^*) \xi_{\rm NP}^{\langle S_R, T \rangle}$$

M. Fael | ICHEP 2024 | Prague | July 19th 2024

 $C_i \mathcal{O}_i$

$$\begin{split} \mathcal{O}_{V_{L(R)}} &= \left(\bar{c}\gamma_{\mu}P_{L(R)}b\right)\left(\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}\right)\\ \mathcal{O}_{S_{L(R)}} &= \left(\bar{c}P_{L(R)}b\right)\left(\bar{\ell}P_{L}\nu_{\ell}\right)\\ \mathcal{O}_{T} &= \left(\bar{c}\,\sigma_{\mu\nu}P_{L}b\right)\left(\bar{\ell}\,\sigma^{\mu\nu}P_{L}\nu_{\ell}\right) \end{split}$$

 $C_{S_L}|^2 \xi_{\mathrm{NP}}^{\langle S_L, S_L \rangle} + |C_{S_R}|^2 \xi_{\mathrm{NP}}^{\langle S_R, S_R \rangle} + |C_T|^2 \xi_{\mathrm{NP}}^{\langle T, T \rangle}$ - $\operatorname{Re}(C_{S_L}C_{S_R}^*) \xi_{\operatorname{NP}}^{\langle S_L, S_R \rangle} + \operatorname{Re}(C_{S_L}C_T^*) \xi_{\operatorname{NP}}^{\langle S_L, T \rangle}$

INSTALLATION

\$: git clone <u>https://gitlab.com/vcb-inclusive/kolya.git</u> \$: cd kolya

\$: pip3 install.

import kolya [1]: **import** numpy **as** np

Physical parameters

Physical parameters like quark masses like $m_b^{
m kin}(\mu_{WC})$, $\overline{m}_c(\mu_c)$ and $lpha_s(\mu_s)$ are declared in the class parameters.physical_parameters . Initialization set default values

```
par = kolya.parameters.physical_parameters()
[2]:
     par.show()
                  mbkin( 1.0 GeV) = 4.563 GeV
     bottom mass:
                       mcMS(3.0 GeV) = 0.989 GeV
     charm mass:
     coupling constant: alpha_s(4.563 \text{ GeV}) = 0.2182
    internally use CRunDec. For instance, we set the quark masses at a scale \mu_{WC}=\mu_c=2 GeV in the following way:
[3]: par = kolya.parameters.physical_parameters()
     par.FLAG2023(scale_mcMS=2.0, scale_mbkin=2.0)
     par.show()
                        mbkin( 2.0 GeV)
                                             = 4.295730717092438
     bottom mass:
     charm mass:
                        mcMS( 2.0 GeV)
     coupling constant: alpha_s( 4.563 GeV) = 0.21815198098622618
```

M. Fael | ICHEP 2024 | Prague | July 19th 2024

In order to set the quark masses at scales different from the default ones in a consistent way, we include the method FLAG2023 which

GeV = 1.0940623249384822 GeV

HQE parameters

Non-perturbative matrix elements in the HQE are declared in the class parameters.HQE_parameters. This class is defined in the historical basis of hep-ph/1307.4551. By default they are initalized to zero. We can set their values in the following way

```
[4]: hqe = kolya.parameters.HQE_parameters(
         muG = 0.306,
         rhoD = 0.185,
         rhoLS = -0.13,
         mupi = 0.477,
     hqe.show()
     mupi = 0.477 GeV^2
         = 0.306 \text{ GeV}^2
     muG
     rhoD = 0.185 GeV^{3}
     rhoLS = -0.13 GeV^3
    hqe.show(flagmb4=1)
[5]:
     mupi = 0.477 GeV^2
     muG = 0.306 GeV^2
     rhoD = 0.185 GeV^{3}
     rhoLS = -0.13 GeV^3
          0
             GeV^4
     m1 =
     m2 = 0
             GeV^4
             GeV^4
     m3 = 0
             GeV^4
     m4 = 0
     m5 = 0 GeV^{4}
     m6 = 0 GeV^{4}
     m7 =
              GeV^4
           0
             GeV^4
     m8 =
          0
     m9 = 0 GeV^{4}
```


Wilson coefficients

The Wilson coefficients in the effective Hamiltonian are declared in the class parameters.WCoefficients. They are initialized to zero and can be set in the following way

```
[6]: wc = kolya.parameters.WCoefficients(
    VL = 0,
    VR = 0,
    SL = 0.1,
    SR = 0.1,
    T = 0,
    )
wc.show()
C_{V_L} = 0
C_{V_R} = 0
C_{V_R} = 0.1
C_{S_L} = 0.1
C_{S_R} = 0.1
C_{T} = 0
```

Total Rate

We define the total rate as

 $\Gamma_{
m sl}=rac{G_I}{2}$

The coefficients X is a function of the quark masses, α_s , the HQE parameters and the Wilson coefficients. It is evaluated by the function X_Gamma_KIN_MS(par, hqe, wc)

```
[5]: hqe = kolya.parameters.HQE_parameters(
    muG = 0.306,
    rhoD = 0.185,
    rhoLS = -0.13,
    mupi = 0.477,
    )
    wc = kolya.parameters.WCoefficients()
    kolya.TotalRate.X_Gamma_KIN_MS(par,hqe,wc)
```

[5]: 0.539225163728085

The branching ratio is given by the function BranchingRatio_KIN_MS(Vcb,par,hqe,wc)

[6]: Vcb = 42.2e-2
kolya.TotalRate.BranchingRatio_KIN_MS(Vcb,par,hqe,wc)

[6]: 10.555834162102016

M. Fael | ICHEP 2024 | Prague | July 19th 2024

$$rac{2}{F}(m_b^{
m kin})^5 \over 192\pi^3} |V_{cb}|^2 X$$

Centralized q^2 moments

first centralized moment is calculated as follows:

q2cut = 8.0 # GeV^2 [6]: kolya.Q2moments.moment_1_KIN_MS(q2cut,par,hqe,wc)

[6]: 8.996406491856465

The result for the moment $\langle q^{2n}
angle$ is in GeV 2n

Centralized electron energy moments

 E_l moments are evaluated with Elmoments.moment_n_KIN_MS(Elcut, par, hqe, wc), where $E_{\rm cut}$ must be provided in GeV. The first centralized moment is calculated as follows:

[9]: elcut = 0.5 # GeV kolya.Elmoments.moment_1_KIN_MS(elcut,par,hqe,wc)

[9]: 1.4192938891883413

The result for $\langle E_l^n
angle$ is in GeV n

Centralized M_X^2 moments

 M_X^2 moments are evaluated with MXmoments.moment_n_KIN_MS(El_cut, par, hqe, wc), where $E_{
m cut}$ must be provided in GeV. The first centralized moment is calculated as follows:

[13]: elcut = 0.5 #GeV kolya.MXmoments.moment_1_KIN_MS(elcut,par,hqe,wc)

[13]: 4.492408891792521

The result for $\langle M_X^{2n}
angle$ is in GeV 2n

M. Fael | ICHEP 2024 | Prague | July 19th 2024

Q2 moments are evaluated with Q2moments.moment_n_KIN_MS(q2cut, par, hqe, wc), where $q_{
m cut}^2$ must be provided in GeV 2 . The

FIT UP TO $1/m_b^5$

Bernlochner, MF, Milutin, Prim, Vos, in preparation

- Uncertainties from perturbative QCD estimated via scale variation.
- ► Very low p-Value in the fit.
- ► Current recipe: assign uncertainty on μ_G and ρ_D to cover the theory uncertainty from truncation.
- ➤ Can we use new expressions up to $O(1/m_b^5)$ to better assess theory uncertainty in the $1/m_b$ expansion?

 χ^2 /d.o.f. = 801/51

LSSA APPROXIMATION

- ► Too many parameters at $O(1/m_h^4)$ and $O(1/m_h^5)$
- Reparametrization invariance reduce the number Mannel, Vos, JHEP 1806 (2018) 115; MF, Mannel, Vos, JHEP 02 (2019) 177, Mannel, Milutin, Vos hep-ph/2311.1200
 - > $1/m_b^4$: 5 instead of 8
 - > $1/m_b^5$: 10 instead of 19
- Idea: catch "higher order" effects" by estimating $O(1/m_h^4)$ and $O(1/m_h^5)$ and remove ρ_D uncertainty
- Lower state saturation ansatz (LSSA)

Mannel, S. Turczyk and N. Uraltsev, JHEP 1011, 109 (2010) Heinonen and T. Mannel, Nucl. Phys. B 889 (2014) 46

> $\langle B | \bar{b}_{v} i D^{\mu_{1}} i D^{\mu_{2}} \dots i D^{\mu_{N}} \Gamma b_{v} | B \rangle = \langle B | \bar{b}_{v} A_{k} B_{n-k} \Gamma b_{v} | B \rangle$ $= \frac{\mathbf{I}}{2M_B} \sum_{n} \langle B | \bar{b}_v A_k b_v | H_n \rangle \langle H_n | \bar{b}_v B_k \Gamma b_v | B \rangle$

Approximate with the lightest state $|B\rangle\langle B|$

CONCLUSIONS

- ► Kolya is an open-source code for inclusive decays written in python.
- Comprehensive framework where all available corrections are implemented and validated.
- > The library is open source, so code contributions and improvements are very welcome.
- New higher order corrections can be implemented like
 - ► QED corrections
 - \blacktriangleright Exact NNLO corrections to E_1 and M_X moments with cuts
 - > NLO corrections to ρ_D for E_l and M_X moments with cuts
- ► Additional variable
 - \blacktriangleright Forward-backward asymmetries A_{FB}
 - > Lepton universality ratio $R_X = \Gamma_{B \to X_c \tau \bar{\nu}_{\tau}} / \Gamma_{B \to X_c l \bar{\nu}_l}$
 - \blacktriangleright Decay to charmless final state $B \rightarrow X_{\mu} l \bar{\nu}_{l}$

M. Fael | ICHEP 2024 | Prague | July 19th 2024

References

- [1] Y. Nir, The Mass Ratio m_c/m_b in Semileptonic B Decays, Phys. Lett. B **221** (1989) 184–190.
- [2] A. Pak and A. Czarnecki, Mass effects in muon and semileptonic $b \rightarrow c$ decays, Phys. Rev. Lett. 100 (2008) 241807, [0803.0960].
- [3] A. Pak and A. Czarnecki, *Heavy-to-heavy quark decays at NNLO*, *Phys. Rev. D* **78** (2008) 114015, [0808.3509].
- [4] M. Dowling, J. H. Piclum and A. Czarnecki, Semileptonic decays in the limit of a heavy daughter quark, Phys. Rev. D 78 (2008) 074024, [0810.0543].
- [5] M. Egner, M. Fael, K. Schönwald and M. Steinhauser, *Revisiting semileptonic B meson decays at next-to-next-to-leading order*, *JHEP* 09 (2023) 112, [2308.01346].
- [6] M. Fael, K. Schönwald and M. Steinhauser, Third order corrections to the semi-leptonic $b \rightarrow c$ and the muon decays, 2011.13654.
- [7] A. V. Manohar and M. B. Wise, Inclusive semileptonic B and polarized Λ_b decays from QCD, Phys. Rev. D 49 (1994) 1310–1329, [hep-ph/9308246].
- [8] B. Blok, L. Koyrakh, M. A. Shifman and A. I. Vainshtein, Differential distributions in semileptonic decays of the heavy flavors in QCD, Phys. Rev. D 49 (1994) 3356, [hep-ph/9307247].
- [9] T. Becher and M. Neubert, Toward a NNLO calculation of the anti-B —> X(s) gamma decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251–259, [hep-ph/0603140].
- [10] A. Alberti, T. Ewerth, P. Gambino and S. Nandi, *Kinetic operator effects in* $\bar{B} \to X_c l \nu$ at $O(\alpha_s)$, *Nucl. Phys. B* 870 (2013) 16–29, [1212.5082].
- [11] A. Alberti, P. Gambino and S. Nandi, *Perturbative corrections to power suppressed effects* in semileptonic B decays, JHEP **01** (2014) 147, [1311.7381].
- [12] T. Mannel, A. A. Pivovarov and D. Rosenthal, *Inclusive weak decays of heavy hadrons with power suppressed terms at NLO*, *Phys. Rev. D* **92** (2015) 054025, [1506.08167].
- [13] M. Gremm and A. Kapustin, Order 1/m(b)**3 corrections to B -> X(c) lepton anti-neutrino decay and their implication for the measurement of Lambda-bar and lambda(1), Phys. Rev. D 55 (1997) 6924–6932, [hep-ph/9603448].
- [14] T. Mannel, D. Moreno and A. A. Pivovarov, NLO QCD Corrections to Inclusive $b \rightarrow c\ell\bar{\nu}$ Decay Spectra up to $1/m_Q^3$, 2112.03875.
- [15] B. M. Dassinger, T. Mannel and S. Turczyk, *Inclusive semi-leptonic B decays to order* $1/m_b^4$, *JHEP* **03** (2007) 087, [hep-ph/0611168].

- [16] T. Mannel, S. Turczyk and N. Uraltsev, Higher Order Power Corrections in Inclusive B Decays, JHEP 11 (2010) 109, [1009.4622].
- [17] M. Fael, T. Mannel and K. Keri Vos, V_{cb} determination from inclusive $b \rightarrow c$ decays: an alternative method, JHEP **02** (2019) 177, [1812.07472].
- [18] T. Mannel, I. S. Milutin and K. K. Vos, *Inclusive semileptonic* $b \to c\ell\overline{\nu}$ decays to order $1/m_b^5$, *JHEP* **02** (2024) 226, [2311.12002].
- [19] V. Aquila, P. Gambino, G. Ridolfi and N. Uraltsev, Perturbative corrections to semileptonic b decay distributions, Nucl. Phys. B 719 (2005) 77–102, [hep-ph/0503083].
- [20] M. Fael and F. Herren, NNLO QCD corrections to the q² spectrum of inclusive semileptonic B-meson decays, JHEP 05 (2024) 287, [2403.03976].
- [21] M. Trott, Improving extractions of $|V_{cb}|$ and m_b from the hadronic invariant mass moments of semileptonic inclusive B decay, Phys. Rev. D 70 (2004) 073003, [hep-ph/0402120].
- [22] Fael, Matteo and Herren, Florian and Schönwald, Kay. in preparation.
- [23] S. Biswas and K. Melnikov, Second order QCD corrections to inclusive semileptonic $b \to X_c \ell \bar{\nu}_\ell$ decays with massless and massive lepton, JHEP **02** (2010) 089, [0911.4142].

This research was supported by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 101065445 - PHOBIDE.