Probing new physics CHARLES VERSITY $(\rightarrow \Lambda \pi^+) \tau \bar{\nu}_{\tau} decay$

TSTITUTE OF Technology

Based on arxiv 2403.12155 along with Soumitra Nandi & Shantanu Sahoo

Ria Sain, IIT Guwahati

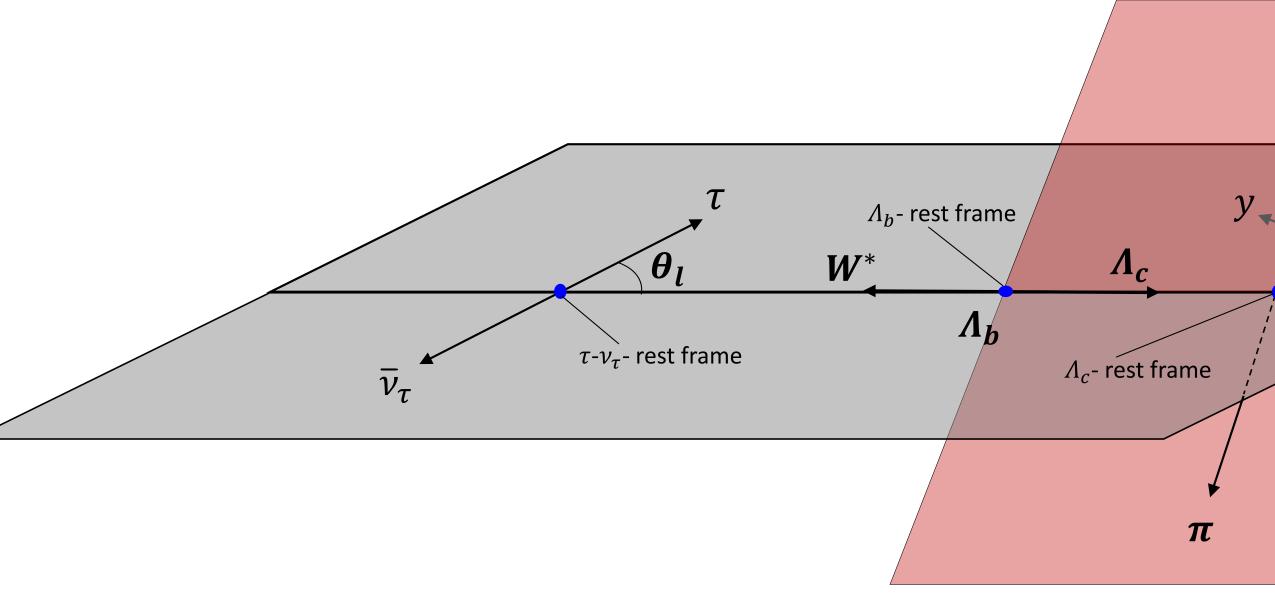
ICHEP 2024, Prague

Motivation

- $B \to D^{(*)} \ell \bar{\nu}$ decays are being studied theoretically and experimentally for the last decade extensively and shows anomaly in Lepton Universality(LU) ratios
- To ensure if any New Physics (NP) shows in these mesonic decays we need some complimentary decays too
- One such decay is $\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda^+ \pi)$
- Belle and Babar has B decay results but they cannot measure b-baryons
- LHCb can and recently measured the BR for $\Lambda_h^0 \to \Lambda_c^+ \tau \bar{\nu}_{\tau}$
- Using DELPHI result for $\Lambda_b^0 \to \Lambda_c^+ \mu \bar{\nu}_{\mu}$, LHCb provided LU ratio R_{Λ_c}
- so high time to analyse the current status of NP operators taking all the semileptonic b-decays

$$\ell \bar{
u}_{ au}$$

Hamiltonian


• The full hamiltonian for underlying $b \rightarrow$

$$\begin{aligned} \mathcal{H}_{eff} = & \frac{G_F V_{cb}}{\sqrt{2}} \Bigg\{ \Big[(1+C_{V_1}) \bar{c} \gamma_\mu (1-\gamma_5) b + C_{V_2} \bar{c} \gamma_\mu (1+\gamma_5) b \Big] \bar{\tau} \gamma^\mu (1-\gamma_5) \nu_\tau \\ &+ \Big[C_{S_1} \bar{c} (1+\gamma_5) b + C_{S_2} \bar{c} (1-\gamma_5) b \Big] \bar{\tau} (1-\gamma_5) \nu_\tau + \Big[C_T \bar{c} \sigma^{\mu\nu} (1-\gamma_5) b \Big] \bar{\tau} \sigma_{\mu\nu} (1-\gamma_5) \nu_\tau + h.c \Bigg\}, \end{aligned}$$

- So we have C_{V_1} , C_{V_2} , C_{S_1} , C_{S_2} , C_T as new physics operators
- taken the ν as left-handed for all the operators

Ria Sain, IIT Guwahati

$$c\tau\bar{\nu}$$

$$\frac{d\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_\Lambda d\phi} = \frac{3}{8\pi} K(q^2,\cos\theta_\ell,\cos\theta_\Lambda,\phi)$$

 $K(q^2, \cos\theta_\ell, \cos\theta_\Lambda, \phi) = \left(K_{1ss} \sin^2\theta_\ell + K_{1cc} \cos^2\theta_\ell + K_{1c} \cos\theta_\ell\right)$ + $(K_{2ss}\sin^2\theta_{\ell} + K_{2cc}\cos^2\theta_{\ell} + K_{2c}\cos\theta_{\ell})\cos\theta_{\Lambda}$ + $(K_{3sc}\sin\theta_{\ell}\cos\theta_{\ell} + K_{3s}\sin\theta_{\ell})\sin\theta_{\Lambda}\cos\phi$ + $(K_{4sc}\sin\theta_{\ell}\cos\theta_{\ell} + K_{4s}\sin\theta_{\ell})\sin\theta_{\Lambda}\sin\phi$.

Ria Sain, IIT Guwahati

Angular distribution

- the decay is constructed as consecutive 2-body decays: $\Lambda_b \to \Lambda_c W^*$ then $W^* \to \tau \bar{\nu}$ and $\Lambda_c \to \Lambda \pi$
- the 4-fold decay distribution is given by the kinematic variables θ_{ℓ} , θ_{Λ} and azimuthal angle ϕ and di-lepton mass q^2
- 10 observables: 8 survives in SM

Λ

 θ_{Λ}

φ

Z

- decay rate $\frac{d\Gamma}{da^2} = 2K_{1ss} + K_{1cc}$
- leptonic forward-backward(FB) asymmetry:
- FB asymmetry coming from the daughter Λ_c
- FB asymmetry coming from the coefficient o
- the τ -polarization asymmetry: $P_{\tau}^{(\Lambda_c)}(q^2) = \frac{dI}{dr}$
- Λ_c spin polarization asymmetry: $P_{\Lambda_c}(q^2) =$
- convexity parameter $C_F^{\ell}(q^2) = \frac{1}{d\Gamma/dq^2} \left(\frac{d}{d(\cos\theta_d)} \right)$
- other normalised ang. observables $\hat{K}_i = \frac{1}{2K_{1ss}}$

important angular observables

$$A_{\text{FB}}^{\ell} = \frac{3}{2} \frac{K_{1c}}{2K_{1ss} + K_{1cc}}$$

$$decay: A_{\text{FB}}^{\Lambda_c} = \frac{1}{2} \frac{2K_{2ss} + K_{2cc}}{2K_{1ss} + K_{1cc}}$$

$$decay: A_{\text{FB}}^{\Lambda_c} = \frac{1}{2} \frac{2K_{2ss} + K_{2cc}}{2K_{1ss} + K_{1cc}}$$

$$df \cos \theta_{\ell} \cos \theta_{\Lambda}: A_{\text{FB}}^{\Lambda_c} = \frac{3}{4} \frac{K_{2c}}{2K_{1ss} + K_{1c}}$$

$$\frac{\Gamma^{\lambda_{\tau}=1/2}/dq^2 - d\Gamma^{\lambda_{\tau}=-1/2}/dq^2}{d\Gamma/dq^2}$$

$$\frac{d\Gamma^{\lambda_{\Lambda_c}=1/2}/dq^2 - d\Gamma^{\lambda_{\Lambda_c}=-1/2}/dq^2}{d\Gamma/dq^2}$$

$$\frac{d\Gamma^{\lambda_{\Lambda_c}=1/2}/dq^2 - d\Gamma^{\lambda_{\Lambda_c}=-1/2}/dq^2}{d\Gamma/dq^2}$$

$$\frac{K_i}{k_i} \text{ (independent of | V_{cb}|)}$$

Experiment results

R(D) [1]	$\mathbf{R}(\mathbf{D}^*)$ [1]	correlation	[1]	1]HFLAV Collab	$R(D)_{SM} = 0.30$	
0.357(29)	0.284(12)	-0.37		2023	$R(D^*)_{SM} = 0.23$	$58 \pm 0.012.$
				r	lore than 2σ taking c	orrelation
$L^{D^*} = 0.4$	3 ± 0.06 :	$\pm 0.03.$		compatible wi	th SM	
	LHCb[23	11.05224]				$R(\Lambda_c)$ has opposit
$\to \Lambda_c \tau^- \nu$	$(\tau_{\tau}) = (1.50)$	$\pm 0.16 \pm 0.2$		and the later of t	d	irctions
		LHCb[2	2201.03497	7]	$R(\Lambda_c)_{SM} = 0.3$	$330 \pm 0.010,$
ELPHI[2004]	results on μ r	node LHCb pre	edicts :	$\mathcal{R}(\Lambda_c^+) = 0.2$	$242 \pm 0.026 \pm 0.026$	$.040 \pm 0.059,$
	F	Ria Sain, IIT Guwa	ahati		CHEP 2024	

$$F_L^{D^*} = 0.43 \pm 0.06 \pm 0.03.$$

LHCb[2311.05224] $\mathcal{B}(\Lambda_b o \Lambda_c au^-
u_ au) = (1.50 \pm 0.16 \pm 0.25)$

using DE

Fit procedure

- coefficients C_k (all taken real):
- $V_{i,i}^{exp(th)}$ is the corresponding measured (theoretical) covariance matrix.

$$\chi^2(C_k) = \sum_{i,j} \left[\mathcal{O}_i^{th}(C_k) - \mathcal{O}_i^{exp} \right] (V^{exp} + V^{th})_{i,j}^{-1} \left[\mathcal{O}_i^{th}(C_k) - \mathcal{O}_i^{exp} \right].$$

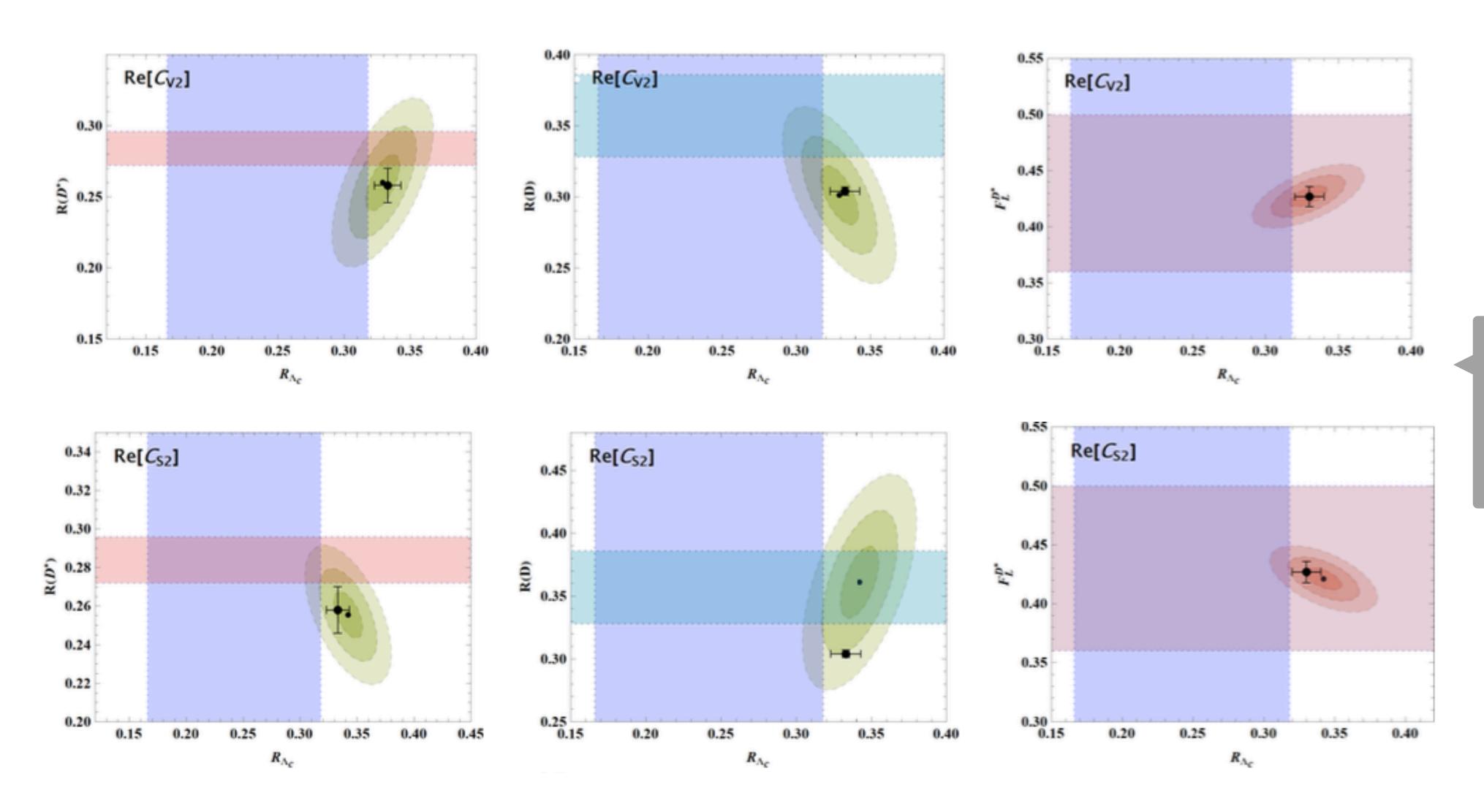
- there are such 5 scenarios for 5 NP operators
- we have also taken 2 parameter scenario i.e. taking 2 parameter at a time.

we defined
$$\sigma_{dev} = \left| \frac{\mathcal{O}_i^{exp} - \mathcal{O}_i^{NP}}{\sqrt{\sigma_i^2} |_{exp} + \sigma_i^2} \right|_{NP}$$

Ria Sain, IIT Guwahati

• To perform a model-independent analysis, we did the χ^2 -fit to the data with different NP Wilson

• the theory correlations will be between $R(D^*)$ and $F_L^{D^*}$ and between $R(\Lambda_c)$ and $\mathscr{B}(\Lambda_b \to \Lambda_c \tau \nu)$.


• when we say 1-parameter scenario it means we take C_{V_1} , C_{V_2} etc one at a time in addition to SM current,

One parameter fit

Parameter	One Para	σ_{dev} (in σ)			tension b/w observable from fit and experimental data		
	Fit values	$\chi^2_{min.}/{ m DOF}$	P-Value	R(D)	$R(D^*)$	$R(\Lambda_c)$	
$Re[C_{S_1}]$	0.104(45)	4.463/4	0.215	0.151	1.355	1.372	none of the one-operator scenarios could
$Re[C_{S_2}]$	0.101(47)	5.187/4	0.159	0.098	1.709	1.297	explain all three data within 1 σ
$Re[C_{V_1}]$	0.050(22)	4.001/4	0.261	0.683	0.048	1.524	
$Re[C_{V_2}]$	-0.0045(339)	9.176/4	0.027	1.564	1.029	1.128	for C_{V_2} , none of the 3 data could
$Re[C_T]$	-0.022(18)	7.903/4	0.048	1.971	0.343	1.385	be explained within 1 σ


	Observables	Observ	ables Predi	Expt. Measurement			
	$\mathbf{Re}[\mathbf{C}_{\mathbf{S}_1}] \qquad \mathbf{Re}[\mathbf{C}_{\mathbf{S}_2}] \qquad \mathbf{Re}[\mathbf{C}_{\mathbf{V}_1}] \qquad \mathbf{Re}[\mathbf{C}_{\mathbf{V}_2}] \qquad \mathbf{Re}[\mathbf{C}_{\mathbf{T}}]$						
	$\mathbf{R}(\mathbf{D})$	0.363(27)	0.361(29)	0.335(14)	0.301(21)	0.299(5)	0.357(29) [1]
	$\mathbf{R}(\mathbf{D}^*)$	0.261(12)	0.255(12)	0.285(17)	0.260(20)	0.276(20)	0.284(12) [1]
$F_I(D^*)$ and $P^{\tau}(D^*)$ can be	$\mathbf{R}(\mathbf{\Lambda_c})$	0.348(14)	0.342(13)	0.361(18)	0.329(13)	0.352(23)	0.242(76)[52]
explained comfortably in 1 σ	$\mathbf{F}^{\ell}(\mathbf{D}^*)$	0.433(3)	0.421(3)	0.427(9)	0.427(3)	0.421(6)	0.430(70) [53]
	$\mathbf{P}^{ au}(\mathbf{D}^*)$	-0.502(10)	-0.535(9)	-0.519(7)	-0.519(7)	-0.505(14)	-0.38(54) [34]
	$\mathbf{P}^{ au}(\mathbf{D})$	0.433(42)	0.431(45)	0.324(3)	0.324(3)	0.336(10)	N.A.

Correlation plot in 1 param. scenario

Ria Sain, IIT Guwahati

these 2 scenario can only explain all data within 3 σ

Two parameter scenario

$$\begin{split} K_{1cc} = & N \left[2 \left(\left| H_{-\frac{1}{2},0}^{\text{SP}} \right|^{2} + \left| H_{\frac{1}{2},0}^{\text{SP}} \right|^{2} + \left| H_{-\frac{1}{2},-1}^{\text{VA}} \right|^{2} + \left| H_{\frac{1}{2},+1}^{\text{VA}} \right|^{2} \right) \\ &+ 8 \left(\left| H_{-\frac{1}{2},+1,-1}^{T,-\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},+1,-1}^{T,\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},+1,0}^{T,\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},+1,0}^{T,\frac{1}{2}} \right|^{2} \right) \\ &- 16 \text{Re} \left[H_{-\frac{1}{2},0}^{T,-\frac{1}{2}} + H_{\frac{1}{2},+1,-1}^{T,-\frac{1}{2}} + H_{\frac{1}{2},+1,-1}^{T,\frac{1}{2}} H_{\frac{1}{2},+1,0}^{T,\frac{1}{2}} \right] \\ &+ \frac{m_{\ell}}{\sqrt{q^{2}}} \left\{ \text{Re} \left[4 \left(H_{-\frac{1}{2},0}^{\text{SP}} H_{-\frac{1}{2},t}^{\text{VA}} + H_{\frac{1}{2},0}^{\text{SP}} H_{\frac{1}{2},t}^{\text{VA}} \right) \right. \\ &+ 8 \left(H_{-\frac{1}{2},0}^{\text{VA}} H_{-\frac{1}{2},t}^{T,-\frac{1}{2}} - H_{-\frac{1}{2},0}^{\text{VA}} H_{-\frac{1}{2},0}^{T,-\frac{1}{2}} - H_{\frac{1}{2},+1,-1}^{\text{VA}} + H_{\frac{1}{2},0}^{T,\frac{1}{2}} \right) \\ &+ 8 \left(H_{-\frac{1}{2},0}^{\text{VA}} H_{-\frac{1}{2},t}^{T,-\frac{1}{2}} - H_{\frac{1}{2},+1,0}^{\text{VA}} H_{\frac{1}{2},+1}^{T,\frac{1}{2}} - H_{\frac{1}{2},+1,-1}^{\text{VA}} + H_{\frac{1}{2},0}^{T,\frac{1}{2}} \right) \\ &+ 8 \left(H_{-\frac{1}{2},0}^{\text{VA}} H_{-\frac{1}{2},0}^{T,-\frac{1}{2}} - H_{\frac{1}{2},+1,0}^{\text{VA}} H_{\frac{1}{2},+1}^{T,\frac{1}{2}} - H_{\frac{1}{2},+1,0}^{\text{VA}} + H_{\frac{1}{2},+1}^{T,\frac{1}{2}} \right) \\ &+ \frac{m_{\ell}^{2}}{q^{2}} \left\{ 2 \left(\left| H_{-\frac{1}{2},0}^{\text{VA}} \right|^{2} + \left| H_{\frac{1}{2},0}^{\text{VA}} \right|^{2} + \left| H_{\frac{1}{2},+1}^{T,\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},+1}^{T,-\frac{1}{2}} \right|^{2} \right) \\ &+ 8 \left(\left| H_{-\frac{1}{2},-1}^{T,\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},+1}^{T,\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},+1}^{T,-\frac{1}{2}} \right|^{2} \right) \right] \\ &+ 16 Re \left[H_{-\frac{1}{2},-1,0}^{T,\frac{1}{2}} + \left| H_{\frac{1}{2},+1}^{T,\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},0}^{T,-\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},0}^{T,-\frac{1}{2}} \right|^{2} \right) \\ &+ 4 \left(\left| H_{-\frac{1}{2},-1}^{T,-\frac{1}{2}} \right|^{2} + \left| H_{-\frac{1}{2},0}^{T,-\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},0}^{T,\frac{1}{2}} \right|^{2} \right) + 8 \text{Re} \left[H_{-\frac{1}{2},-1}^{T,\frac{1}{2}} - H_{\frac{1}{2},+1}^{T,\frac{1}{2}} \right] \\ &+ \frac{m_{\ell}}}{\sqrt{q^{2}}} \left\{ 4 \text{Re} \left[H_{\frac{1}{2},-1}^{T,\frac{1}{2}} + \left| H_{-\frac{1}{2},-1}^{T,\frac{1}{2}} \right|^{2} + \left| H_{\frac{1}{2},+1}^{T,\frac{1}{2}} \right|^{2} \right) + 8 \text{Re} \left[H_{-\frac{1}{2},-1}^{T,\frac{1}{2}} + H_{\frac{1}{2},-1}^{T,\frac{1}{2}$$

$$+ \frac{m_{\ell}}{\sqrt{q^2}} \Biggl\{ 4\text{Re} \Biggl[H^{\text{SP}*}_{-\frac{1}{2},0} H^{\text{VA}}_{-\frac{1}{2},t} + H^{\text{SP}*}_{\frac{1}{2},0} H^{\text{VA}}_{\frac{1}{2},t} \Biggr]$$

$$+ 8\text{Re} \Biggl[H^{\text{VA}*}_{-\frac{1}{2},0} H^{T,-\frac{1}{2}}_{-\frac{1}{2},t,0} - H^{\text{VA}*}_{-\frac{1}{2},+1,-1} - H^{\text{VA}*}_{\frac{1}{2},0} H^{T,\frac{1}{2}}_{\frac{1}{2},+1,-1} - H^{\text{VA}*}_{\frac{1}{2},0} H^{T,\frac{1}{2}}_{\frac{1}{2},+1,-1} - H^{\text{VA}*}_{\frac{1}{2},+1,-1} + H^{\text{VA}*}_{\frac{1}{2},0} H^{T,\frac{1}{2}}_{\frac{1}{2},+1,0} H^{\text{VA}*}_{\frac{1}{2},+1,0} H^{\text{VA}*}_{\frac{1}{2},+1,0} + H^{T,\frac{1}{2}}_{\frac{1}{2},+1,0} H^{\text{VA}*}_{\frac{1}{2},+1,0} H^{\text{VA}*}_{\frac{1}{2},+1} + H^{\text{VA}*}_{-\frac{1}{2},-1} H^{T,\frac{1}{2}}_{-\frac{1}{2},+1} + H^{\text{VA}*}_{\frac{1}{2},+1} H^{T,-\frac{1}{2}}_{\frac{1}{2},+1,0} \Biggr] \Biggr\}$$

$$+ \frac{m_{\ell}^2}{q^2} \Biggl\{ |H^{\text{VA}}_{-\frac{1}{2},-1}|^2 + |H^{\text{VA}}_{\frac{1}{2},+1}|^2 + 2\Biggl(|H^{\text{VA}}_{-\frac{1}{2},t}|^2 + |H^{\text{VA}}_{\frac{1}{2},t}|^2 \Biggr)$$

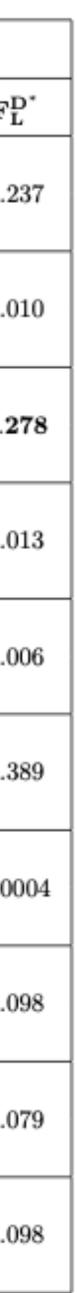
$$\text{Ria Sain, IIT Guwah}$$

mass effects for τ ?

• as
$$\frac{d\Gamma}{dq^2} = 2K_{1ss} + K_{1cc}$$

- in the decay rate terms the interference terms between the NP are coming proportional to m_{ℓ}
- so when we take only one C_i these terms are neglected

 $\int_{-\frac{1}{2}^{*}H_{\frac{1}{2},t,1}^{T,-\frac{1}{2}}} \bullet \text{ for } m_{\ell} = m_{\tau} \text{ these terms contribute much significantly}}$

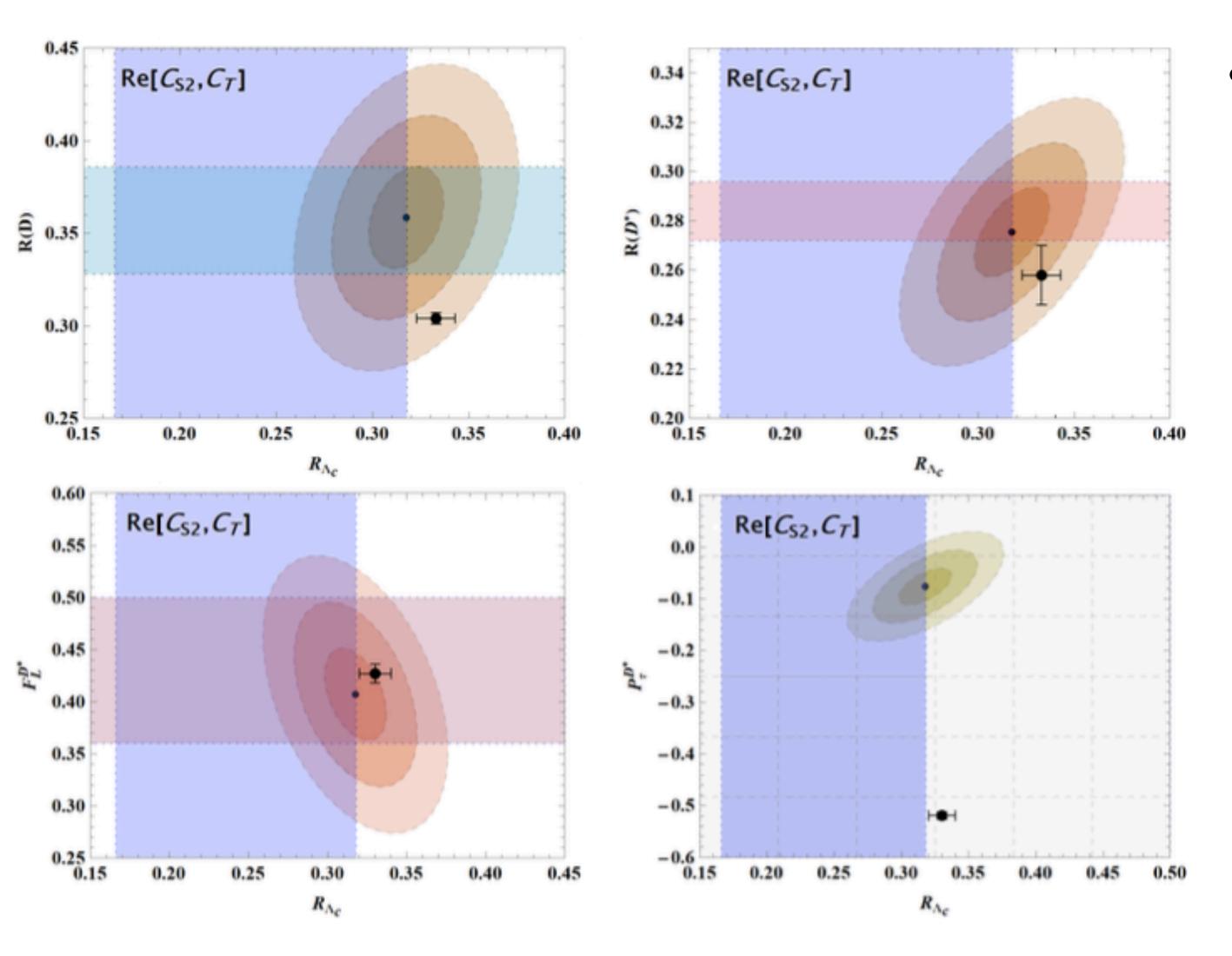


Two parameter scenario fit results

- all the 2 operator scenarios we can explain $B \to D^{(*)} \tau^- \bar{\nu}$ observables
- the scenario with $[\mathcal{O}_{S_2}, \mathcal{O}_T]$ is the only 2-op. scenario which could accommodate the data on $R(\Lambda_c)$ alongside $R(D), R(D^*), F_L^{D^*}$ within their 1 σ .
- also the best-fit scenario with largest p-value(67 %) among all others.

Ria Sain, IIT Guwahati

2 Operator	Tw	o operator sc	σ_{dev} (in σ)					
Scenario		t results	$\chi^2_{\rm min}/{\rm DOF}$	P-Value	R(D)	R(D*)	R(A _c)	$\mathbf{F}_{\mathbf{L}}^{\mathbf{I}}$
C_{S_1}, C_{S_2}	$\mathbf{Re}[\mathbf{C}_{\mathbf{S}_1}]$ $\mathbf{Re}[\mathbf{C}_{\mathbf{S}_2}]$	-2.268(207) 0.904(220)	3.432/3	0.330	0.067	0.409	1.437	0.2
C_{S_1}, C_T	$\begin{array}{c} \mathbf{Re}[\mathbf{C}_{\mathbf{S}_{2}}] \\ \mathbf{Re}[\mathbf{C}_{\mathbf{S}_{1}}] \\ \mathbf{Re}[\mathbf{C}_{\mathbf{T}}] \end{array}$	0.098(46)	3.978/3	0.264	0.038	0.526	1.494	0.0
C_{S_2}, C_T	$\begin{array}{c} \mathbf{Re}[\mathbf{C}_{\mathbf{S}_2}]\\ \mathbf{Re}[\mathbf{C}_{\mathbf{T}}] \end{array}$	-1.255(64) 0.226(32)	1.553/3	0.670	0.039	0.391	0.963	0.2
C_{V_1}, C_{V_2}	$\begin{array}{c} \mathbf{Re}[\mathbf{C}_{\mathbf{V}_1}]\\ \mathbf{Re}[\mathbf{C}_{\mathbf{V}_2}] \end{array}$	-0.978(32) 1.055(23)	3.557/3	0.313	0.113	0.303	1.503	0.0
C_{V_1}, C_T	$\begin{array}{c} \mathbf{Re}[\mathbf{C}_{\mathbf{V}_1}]\\ \mathbf{Re}[\mathbf{C}_{\mathbf{T}}] \end{array}$	0.077(31) 0.037(37)	2.827/3	0.419	0.148	0.466	1.296	0.0
C_{V_2}, C_T	$\mathbf{Re}[\mathbf{C}_{\mathbf{V}_2}]$ $\mathbf{Re}[\mathbf{C}_{\mathbf{T}}]$	0.080(53) - $0.059(28)$	5.829/3	0.120	0.435	0.560	1.634	0.3
Cs_1, Cv_1	$\mathbf{Re}[\mathbf{C}_{\mathbf{S}_1}]$ $\mathbf{Re}[\mathbf{C}_{\mathbf{V}_1}]$	0.051(73) 0.033(34)	3.534/3	0.316	0.102	0.311	1.498	0.00
C_{S_1}, C_{V_2}	$\mathbf{Re}[\mathbf{C}_{\mathbf{S}_1}]$ $\mathbf{Re}[\mathbf{C}_{\mathbf{V}_2}]$	0.123(48) -0.033(33)	3.511/3	0.319	0.106	0.301	1.494	0.0
C_{S_2}, C_{V_1}	$\mathbf{Re}[\mathbf{C}_{\mathbf{S}_2}]$ $\mathbf{Re}[\mathbf{C}_{\mathbf{V}_1}]$	0.045(65) 0.038(29)	3.533/3	0.316	0.101	0.311	1.496	0.0
C_{S_2}, C_{V_2}	$\mathbf{Re}[\mathbf{C}_{\mathbf{S}_2}]$ $\mathbf{Re}[\mathbf{C}_{\mathbf{V}_2}]$	0.139(54) - $0.048(36)$	3.474/3	0.324	0.104	0.292	1.489	0.0



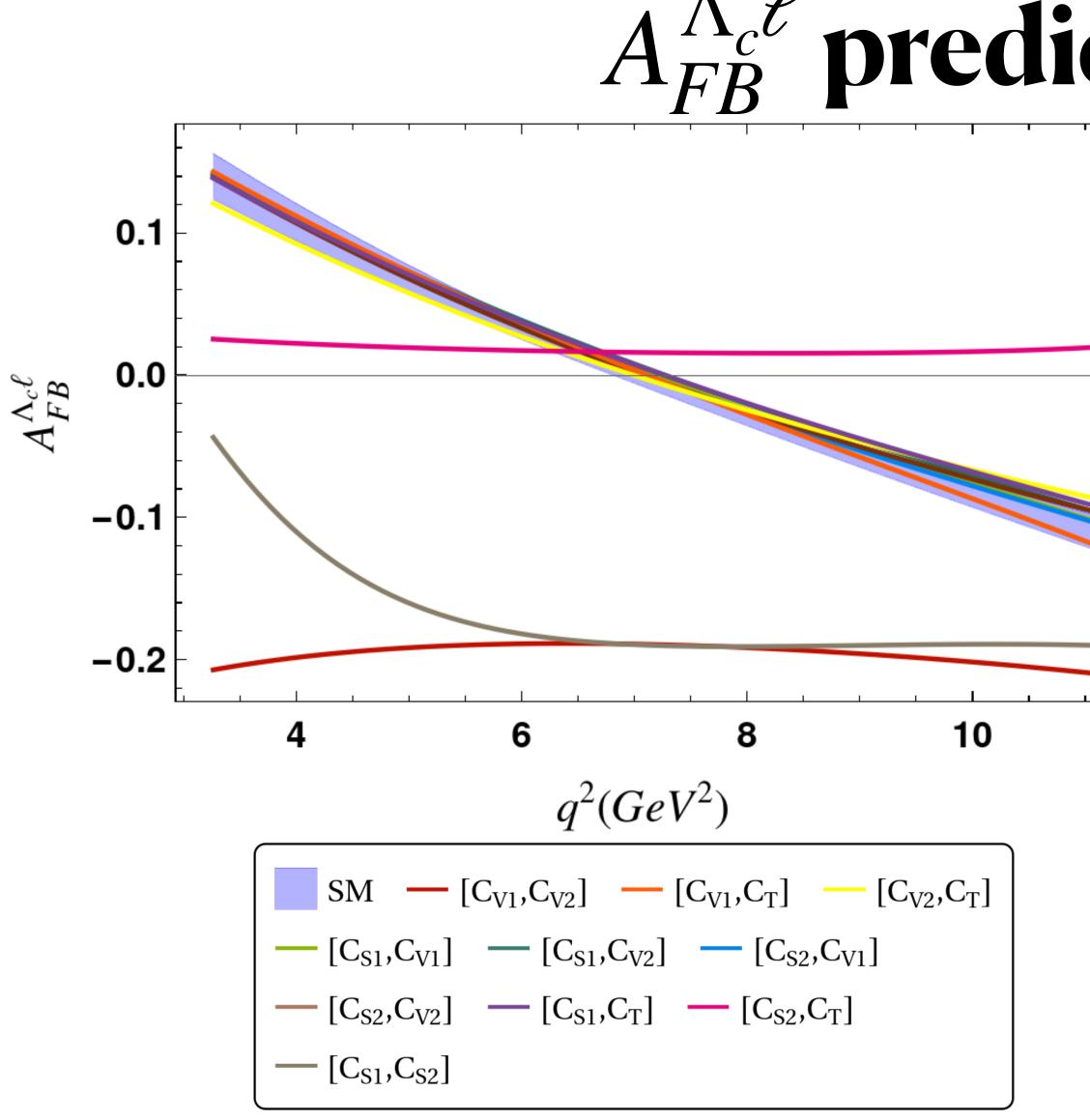
Prediction of Observables

Scenarios	Observables/Predictions								
	$\mathbf{R}(\mathbf{D})$	$\mathbf{R}(\mathbf{D}^*)$	$\mathbf{R}(\mathbf{\Lambda_c})$	$\mathbf{F}_{\mathbf{L}}^{\mathbf{D}^{*}}$	$\mathbf{P}^{\mathbf{D}^*}_{ au}$	$\mathbf{P}^{\mathbf{D}}_{ au}$			
$\mathbf{Re}[\mathbf{C_{S_1}}], \mathbf{Re}[\mathbf{C_{S_2}}]$	0.354(29)	0.275(19)	0.354(19)	0.448(30)	-0.463(77)	0.421(47)			
$\mathbf{Re}[\mathbf{C}_{\mathbf{S}_1}], \mathbf{Re}[\mathbf{C}_{\mathbf{T}}]$	0.355(29)	0.272(20)	0.361(24)	0.429(11)	-0.496(14)	0.435(43)			
$\mathbf{Re}[\mathbf{C_{S_2}}], \mathbf{Re}[\mathbf{C_T}]$	0.359(28)	0.275(18)	0.318(19)	0.407(44)	-0.076(38)	0.196(81)			
$\mathbf{Re}[\mathbf{C}_{\mathbf{V}_1}], \mathbf{Re}[\mathbf{C}_{\mathbf{T}}]$	0.363(29)	0.273(20)	0.345(24)	0.4304(90)	-0.5319(95)	0.306(18)			
$\mathbf{Re}[\mathbf{C}_{\mathbf{V}_2}], \mathbf{Re}[\mathbf{C}_{\mathbf{T}}]$	0.339(29)	0.271(20)	0.374(27)	0.402(17)	-0.474(28)	0.354(14)			
$\mathbf{Re}[\mathbf{C_{V_1}}], \mathbf{Re}[\mathbf{C_{V_2}}]$	0.352(29)	0.277(20)	0.360(18)	0.4291(94)	-0.5197(66)	0.3238(27)			
$\mathbf{Re}[\mathbf{C}_{\mathbf{S}_1}], \mathbf{Re}[\mathbf{C}_{\mathbf{V}_1}]$	0.353(29)	0.277(20)	0.359(19)	0.430(10)	-0.511(13)	0.378(76)			
$\mathbf{Re}[\mathbf{C_{S_1}}], \mathbf{Re}[\mathbf{C_{V_2}}]$	0.353(29)	0.277(20)	0.359(18)	0.4370(100)	-0.499(11)	0.455(47)			
$\mathbf{Re}[\mathbf{C_{S_2}}], \mathbf{Re}[\mathbf{C_{V_1}}]$	0.353(29)	0.277(20)	0.359(19)	0.4244(97)	-0.526(12)	0.373(68)			
$\mathbf{Re}[\mathbf{C_{S_2}}], \mathbf{Re}[\mathbf{C_{V_2}}]$	0.353(29)	0.277(20)	0.358(18)	0.4231(94)	-0.5387(92)	0.472(52)			
Measurement	0.357(29)	0.284(13)	0.242(76)	0.430(70)	-0.38(54)	N.A			

Ria Sain, IIT Guwahati

Correlation b/w observables

Ria Sain, IIT Guwahati


• the correlation plots indicates that we can comfortably explain R(D), $R(D^*)$, R_{Λ_c} and $F_L^{D^*}$ along with $P^{\tau}(D^*)$

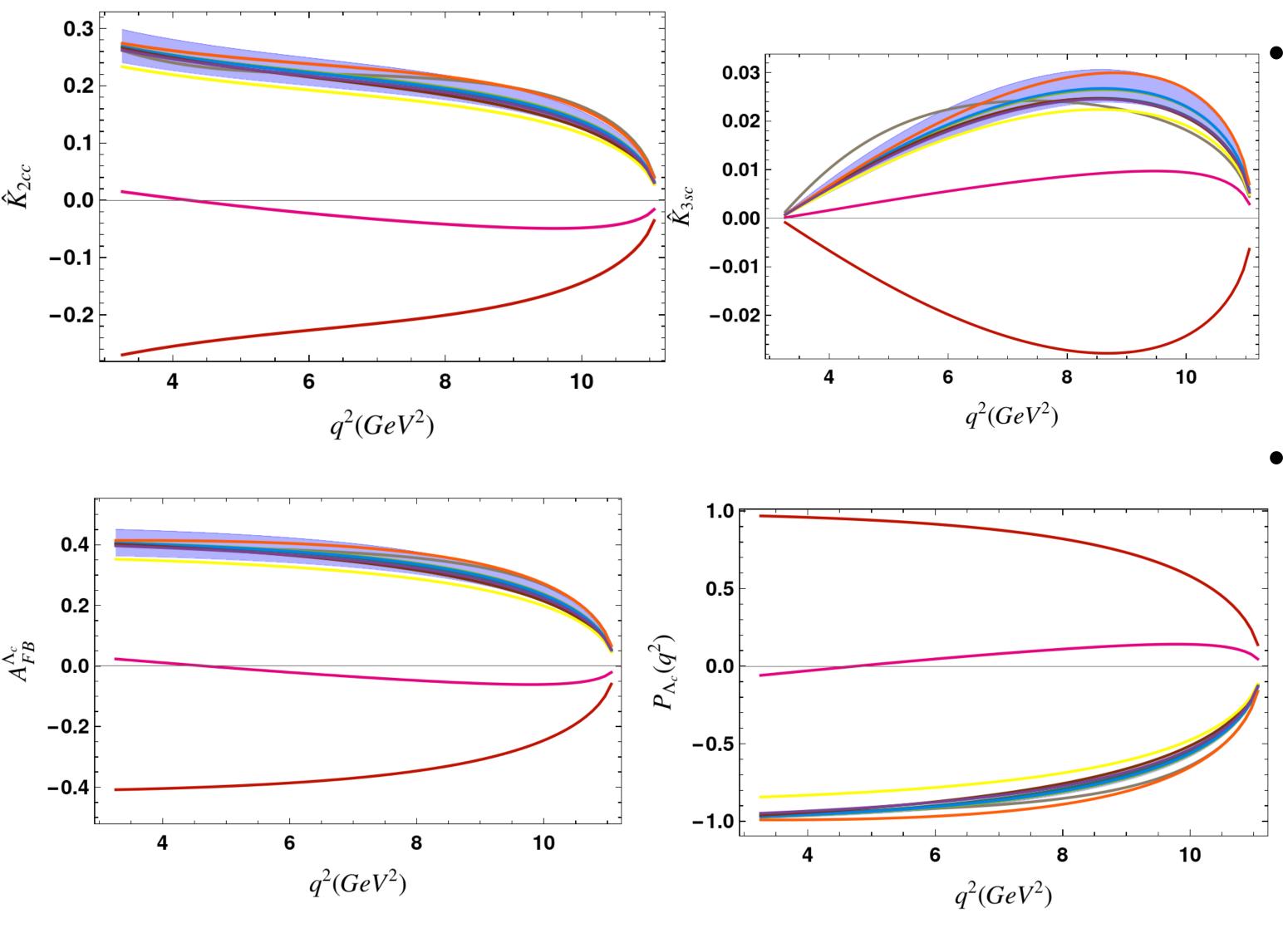
deviation for observables of $\Lambda_b \to \Lambda_c$

	Deviations w.r.t. SM predictions (in σ level)											
Scenario	\hat{K}_{1cc}	\hat{K}_{1ss}	$\hat{\mathbf{K}}_{2\mathrm{cc}}$	$\hat{\mathbf{K}}_{2ss}$	$\hat{\mathbf{K}}_{\mathbf{3sc}}$	$\hat{\mathbf{K}}_{\mathbf{3s}}$	$\mathbf{A}^\ell_{\mathbf{FB}}$	$\mathbf{A}_{\mathbf{FB}}^{\mathbf{\Lambda}_{\mathrm{c}}\tau}$	$\mathbf{A}_{\mathbf{FB}}^{\Lambda_{c}}$	$\mathbf{P}_{\mathbf{\Lambda}_{\mathbf{c}}}$	$\mathbf{P}_{\tau}^{(\mathbf{\Lambda}_{c})}$	$\mathbf{C}_{\mathbf{F}}^{\ell}$
$[\mathbf{Cs_1},\ \mathbf{Cs_2}]$	0.354	0.819	0.193	0.082	0.277	4.22	20.051	9.856	0.161	0.16	0.806	0.60
$[\mathbf{C}_{\mathbf{S}_1}, \ \mathbf{C}_{\mathbf{T}}]$	0.894	0.819	0.24	0.288	0.354	0.664	0.983	0.647	0.364	0.714	1.574	0.868
$[\mathbf{C_{S_2}}, \ \mathbf{C_T}]$	3.328	4.915	6.209	5.794	2.683	2.507	6.116	0.2	7.343	7.532	8.831	4.389
$[\mathbf{C}_{\mathbf{V}_1},\mathbf{C}_{\mathbf{V}_2}]$	0.	0.	13.133	13.136	12.021	4.468	19.279	9.753	18.11	70.863	0.472	0.236
$[\mathbf{C}_{\mathbf{V}_1}, \mathbf{C}_{\mathbf{T}}]$	0.555	0.819	0.44	0.453	0.277	0.547	0.123	0.651	0.602	1.317	0.451	0.745
$[\mathbf{C}_{\mathbf{V}_2}, \ \mathbf{C}_{\mathbf{T}}]$	0.447	0.819	0.901	0.899	0.832	0.868	1.057	0.108	1.185	1.805	1.143	0.589
$[\mathbf{C}_{\mathbf{S}_1},\ \mathbf{C}_{\mathbf{V}_1}]$	0.354	0.	0.	0.	0.	0.39	0.43	0.462	0.	0.	0.636	0.217
$[\mathbf{C}_{\mathbf{S}_1},\ \mathbf{C}_{\mathbf{V}_2}]$	0.894	0.819	0.096	0.136	0.354	0.208	0.921	0.7	0.188	0.786	1.611	0.868
$[\mathbf{C}_{\mathbf{S}_2},\ \mathbf{C}_{\mathbf{V}_1}]$	0.	0.	0.064	0.054	0.	0.469	0.193	0.325	0.081	0.324	0.572	0.118
$[\mathbf{C}_{\mathbf{S}_2},\ \mathbf{C}_{\mathbf{V}_2}]$	0.894	0.819	0.354	0.36	0.354	0.139	0.064	0.217	0.497	1.658	1.089	0.759

- apart from $A_{FR}^{\Lambda_c \ell}$ all the observable show significant deviation for $[\mathcal{O}_{S_2}, \mathcal{O}_T]$ scenario
- in $[\mathcal{O}_{V_1}, \mathcal{O}_{V_2}]$ scenario significant deviation can be seen

Ria Sain, IIT Guwahati

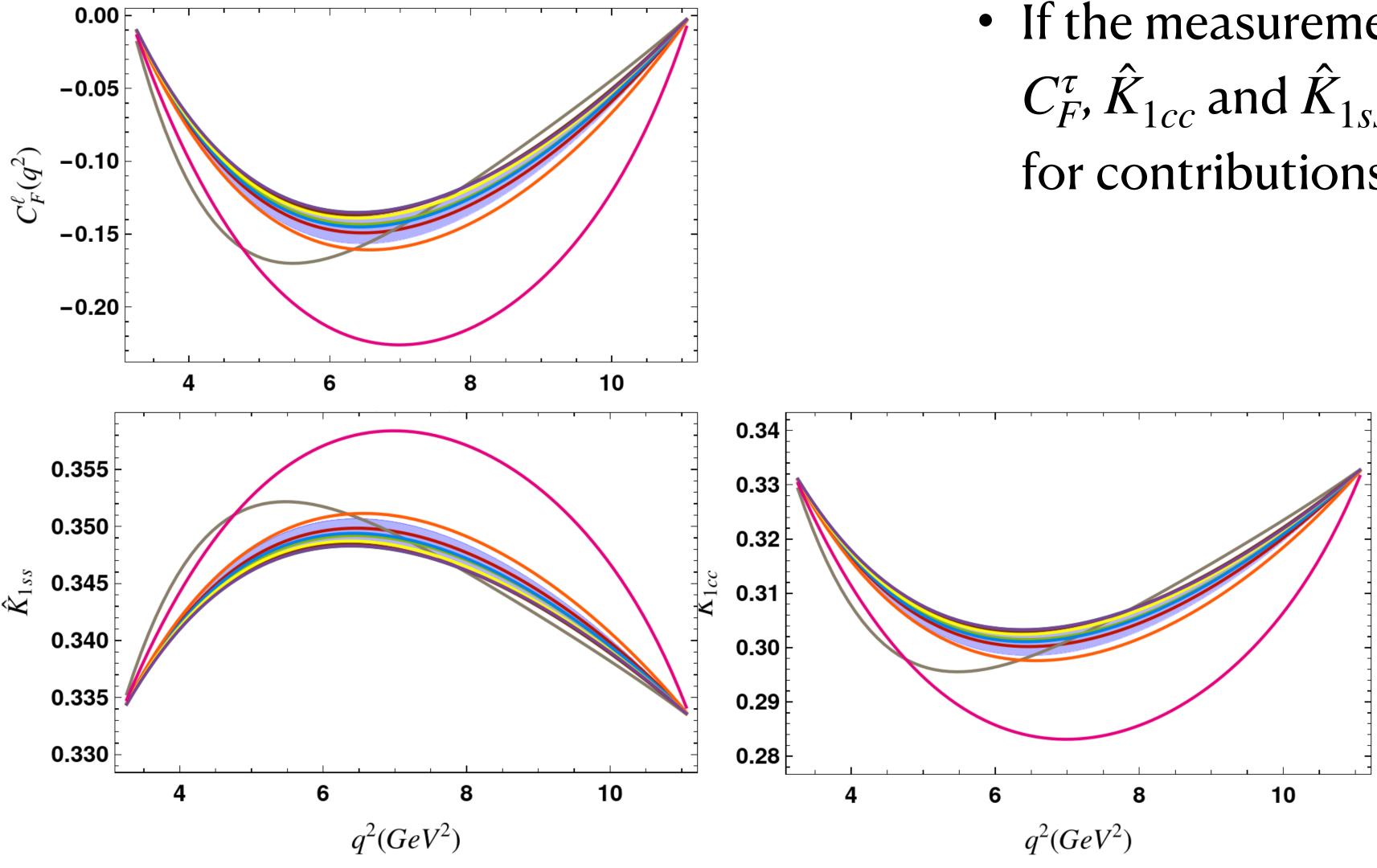
ICHEP 2024


$A_{FR}^{\Lambda_c \ell}$ prediction in full q^2

- very important observable but not discussed in literature
- in SM, zero crossing is there
- for $[\mathcal{O}_{S_2}, \mathcal{O}_T]$ the q^2 integrated $A_{FB}^{\Lambda_c \tau}$ are consistent with the SM.
- due to a relative cancellation in high and low q^2 region, the q^2 integrated value becomes very small and consistent with the respective NP prediction.
- in both the high and low q^2 regions, NP predictions have discrepancies with SM.
- so only q^2 integrated value is not sufficient: bin predictions are needed

Angular obs for $\Lambda_b \to \Lambda_c \tau \bar{\nu}$

Ria Sain, IIT Guwahati


ICHEP 2024

• In the scenario $[\mathcal{O}_{V_1}, \mathcal{O}_{V_2}]$, the predictions for $A_{FB}^{\Lambda_c}, P_{\Lambda_c}, \hat{K}_{2ss}$, \hat{K}_{2cc} and \hat{K}_{3sc} have opposite sign of the respective SM predictions different

• for $[\mathcal{O}_{S_2}, \mathcal{O}_T]$ they show deviation

Observable predictions

Ria Sain, IIT Guwahati

• If the measurements show deviations only in C_F^{τ} , \hat{K}_{1cc} and \hat{K}_{1ss} this could be an indication for contributions from $[\mathcal{O}_{S_2}, \mathcal{O}_T]$.

> SM $- [C_{V1}, C_{V2}] - [C_{V1}, C_T] - [C_{V2}, C_T]$ $[C_{S1}, C_{V1}] - [C_{S1}, C_{V2}] - [C_{S2}, C_{V1}]$ $-[C_{S2}, C_{V2}] - [C_{S1}, C_T] - [C_{S2}, C_T]$ $- [C_{S1}, C_{S2}]$

- We discussed the full 4-body angular distribution for the decay
- various asymmetric and angular observables from the angular analysis $\Lambda_h \to \Lambda_c^+ (\to \Lambda^+ \pi) \tau^- \bar{\nu}$ decay
- Using the available data on $B \to D^{(*)} \ell^- \bar{\nu}$ decays and $R(\Lambda_c)$, we have extracted the new Wilson coefficients and noticed that only the C_{S_2} , C_{V_2} one operator scenario can explain all these data simultaneously within 3σ
- We have done the fits to data using two different operator scenarios and found that scenario $[\mathcal{O}_{S_2}, \mathcal{O}_T]$ is the only two operator scenarios which could accommodate comfortably all the measured data simultaneously
- In the other two operator scenarios, apart from $R(D^*)$, we are able to explain all the other data simultaneously if we take the uncertainties of our predictions at the 3σ level.
- We have studied the interesting correlations between the observables in different NP scenarios.
- we have also discussed the NP sensitivities of all the angular and asymmetric observables in all the two operator scenarios and found that many of them show distinguishable sensitivity to the operators $[\mathcal{O}_{S_2}, \mathcal{O}_T]$, $[\mathscr{O}_{V_1}, \mathscr{O}_{V_2}].$

Ria Sain, IIT Guwahati

Summary

Thank You!