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Lattice QCD
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▶ Ab initio method to study nonperturbative phenomena

of the strong interaction

▶ Systematically improvable uncertainties

▶ Discretize space-time and restrict to finite box (L/a)3 × T/a

→ Introduce finite value of the lattice spacing a

▶Wick-rotate to Euclidean time (t → iτ)

▶ Implement discretized QCD Lagrangian

→ Numerical calculations based on Feynman’s path integral formalism

▶ Stochastic procedure requiring stochastic data analysis

▶ Need experimental inputs to set lattice scale and quark masses

→ Simulate at different values of lattice spacing and quark masses

▶ Combine results to take continuum limit and inter-/extrapolate to

physical quark masses
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Lattice QCD
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© 2012 Andreas Kronfeld/Fermi Natl Accelerator Lab.
▶ Different discretizations

→ Gauge action (Wilson, Symanzik, . . . )

→ Fermion action (Wilson, KS, DWF, . . . )

▶ Results agree after continuum limit

▶ Few quantities needed as input

e.g. Mπ, fπ, fK , MDs , MBs

▶ Numerous post- and predictions

▶Well tested and established

▶ Subpercent level precision possible

→ Simulate at physical pion mass

→ Account for QED and isospin breaking

→ Good control on all systematic effects

(finite volume, discretization, etc.)

B meson masses offset by 4000 MeV

▶ Hadron spectrum [Kronfeld ARNPS62(2012)265]

▶ Data (inputs: open symbols)
[MILC PRD70(2004)094505] [MILC RMP82(2010)1349]
[PACS-CS PRD79(2009)034503] [BMW Science 322(2008)1224]
[QCDSF-UKQCD PRD84(2011)054509]
[RBC-UKQCD PRL105(2010)241601]
[HadSpec PRD83(2011)111502] [UKQCD PRD86(2012)014504]
[FNAL-MILC PRD83(2011)034503] [HPQCD PRD83(2011)014506]
[Möhler, Woloshyn PRD84(2011)054505]
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This work

▶ Hadronic vacuum polarization (HVP) contribution

to the anomalous magnetic moment aµ =
gµ−2

2

→ Separate different contributions

→ Define “windows” to focus on certain parts

▶ Update BMW [BMW Boccaletti et al. arXiv:2407.10913]

→ New simulation at finer physical point ensemble

→ Long distance tail complemented by data driven

evaluation

→ Excellent agreement for intermediate window

with other lattice determinations

→ SM confirmed to 0.37 ppm

→ 40% improvement compared to BMW 2020

⇝ Further details at Lattice 2024
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http://www.arxiv.org/pdf/2407.10913


ρ and K ∗ at the physical point



ρ and K ∗ at the physical point
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▶ Phase shift calculation of the ππ and Kπ scattering amplitudes
[RBC/UKQCD Boyle et al. arXiv:2406.19194] [arXiv:2406.19193]

▶Mass and width determination of the vector channel resonance

▶ Calculation at physical pion mass at one lattice spacing

→ Large uncertainty due to estimating discretization effects

⇝ Further details at Lattice 2024

▶Mρ = 796(5)(50) MeV

Γρ = 192(10)(31) MeV

▶MK∗ = 893(2)(54) MeV

ΓK∗ = 51(2)(11) MeV
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Vcd



Vcd : PDG reports 1.8% uncertainty

▶ PDG averages three different determinations [PDG, Workman et al. PTEP (2022) 083C01]

→ Earlier determination based on neutrino scattering data

|Vcd |νPDG = 0.230± 0.011

→ Leptonic D+ → {µ+νµ, τ
+ντ} decays: LQCD (FNAL/MILC, ETMC) + experiment (BESIII, CLEO)

|Vcd |fDPDG = 0.2181± 0.0050

→ Semileptonic D → πℓν: LQCD (ETMC) + experiment (BaBar, BESIII, CLEO-c, Belle)

|Vcd |Dπ(0)
PDG = 0.2330± 0.014

▶ |Vcd |PDG = 0.221± 0.004

▶ 2023: D → πℓν and Ds → Kℓν determinations by FNAL/MILC exploiting full q2 dependence

|Vcd |Dπ
FNAL/MILC = 0.2238± 0.0029 (with BaBar, BESIII, CLEO-c, Belle data)

|Vcd |DsK
FNAL/MILC = 0.258± 0.015 (with BESIII data)

[FNAL/MILC PRD107(2023)094516]
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https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.107.094516


Vcd : new semileptonic determination exploiting full q2 dependence
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1.3% precision
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B → D∗ℓν



How to determine Vcb?
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[FLAG 2023]

▶ Leptonic Bc → τντ decays

→ Experimentally very challenging

▶ Semileptonic decays

→ B or Bs initial state

→ Inclusive decays

Progress toward first lattice determination

→ Exclusive decays

hadronic pseudoscalar final state

hadronic vector final state

B → D∗ℓν experimentally preferred
(BaBar, Belle, Belle II, LHCb)

▶ Long standing 2− 3σ discrepancy

between inclusive and exclusive
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http://flag.unibe.ch/2021/Media?action=AttachFile&do=get&target=FLAG_webupdate_February2024.pdf


Exclusive semi-leptonic decays on the lattice
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B +M2
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u/d

cb

▶ Treat D∗ as QCD-stable particle (narrow-width approximation)

▶ Conventionally parametrized placing the B meson at rest in terms of

dΓ(B → D∗ℓν)

dq2
= KD∗(q2,mℓ) · |F(q2)|2 · |Vcb|2

experiment known theory input
(nonperturbative)

CKM

t 0 t sink
tt 0 t sink
t

c̄ b̄

u/d

▶ Calculate hadronic matrix elements for form factors f (w), g(w), F1(w), F2(w) with w = vD∗·vB
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Three lattice calculations over the full q2 range
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▶ B → D∗ℓν

FNAL/MILC 2021 [Bazavov et al. EPJC 82 (2022) 1141]

HPQCD 2023 [Harrison, Davies, PRD 109 (2024) 094515]

JLQCD 2023 [Y. Aoki et al. PRD 109 (2024) 074503]

▶ Some tension in the shape of the form factors

→ Limited range in w (FNAL/MILC, JLQCD)

→ Slope not well enough constraint

→ HQET ratios to be scrutinized

⇝ Further details at Lattice 2024

▶ Combined analysis [Bordone, Jüttner, arXiv:2406.10074]

Belle 2023 [Belle PRD 108 (2023) 012002]

Belle II 2023 [Belle II PRD 108 (2023) 092013]
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https://doi.org/10.1140/epjc/s10052-022-10984-9
https://arxiv.org/abs/2304.03137
https://doi.org/10.1103/PhysRevD.109.074503
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mixing and lifetimes



Neutral B(s) meson mixing
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▶ Standard model process described by box diagrams

▶ Top quark contribution dominates

⇒ short-distance process

→ Describe by point-like 4-quark operators

▶ Parameterize experimentally measured oscillation

frequencies ∆mq for q = d , s by

∆mq =
G 2
Fm

2
W

6π2
ηBS0MBq f

2
Bq
B̂Bq

∣∣V ∗
tqVtb

∣∣2
→ Nonperturbative contribution:

decay constant f 2Bq
times bag parameter B̂Bq

→ SM: Oq
1 = b̄αγµ(1− γ5)q

α b̄βγµ(1− γ5)q
β
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Heavy meson lifetimes (∆B = 0 operators)

▶ Using heavy quark expansion (HQE),

lifetimes of heavy mesons are described

by 4-quark operators with ∆B = 0

▶ Operators Q1, Q2, τ1, τ2, contribute

▶∆B = 0 operators mix under renormalization

→ To date no complete LQCD determination

(only exploratory work 20+ years ago)

▶ Quark-line disconnected contributions

→ Notoriously noisy, hard to calculate on the lattice
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b
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Pioneering calculation with new renormalization procedure
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[Black, Harlander, Lange, Rago, Shindler, OW PoS Lattice 263] ⇝ update by M. Black at Lattice 2024

▶ Simplified calculation with some caveats for “neutral” charm-strange meson

▶ Use gradient flow in combination with short-flow-time expansion to renormalize operators

→ Suppresses operator mixing on the lattice

→ Take a → 0 continuum limit as function of the gradient flow time τ

→ Account for operator mixing as part of PT matching to MS in the continuum

▶ Validation: (short distance) meson mixing ▶ Pioneer lifetime determination
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https://doi.org/10.22323/1.453.0263


Highlights

▶ g − 2 updated value for aµ [BMW]

▶ Physical point calculation of ϱ and K∗ [RBC/UKQCD]

▶ New determination of Vcd [Fermilab/MILC]

▶ Updates on B → D∗ℓν [Fermilab/MILC, HPQCD, JLQCD]

▶ First steps to determine heavy meson lifetimes on the lattice [Black et al.]
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