Lattice QCD and flavor physics

Lattice QCD

- Ab initio method to study nonperturbative phenomena of the strong interaction
- Systematically improvable uncertainties
- \blacktriangleright Discretize space-time and restrict to finite box $(L/a)^3 \times T/a$
 - \rightarrow Introduce finite value of the lattice spacing a
- \blacktriangleright Wick-rotate to Euclidean time (t
 ightarrow i au)
- Implement discretized QCD Lagrangian
 - \rightarrow Numerical calculations based on Feynman's path integral formalism
- Stochastic procedure requiring stochastic data analysis
- ▶ Need experimental inputs to set lattice scale and quark masses
 - \rightarrow Simulate at different values of lattice spacing and quark masses
- Combine results to take continuum limit and inter-/extrapolate to physical quark masses

Lattice QCD

- Different discretizations
 - \rightarrow Gauge action (Wilson, Symanzik, ...)
 - \rightarrow Fermion action (Wilson, KS, DWF, ...)
- Results agree after continuum limit
- Few quantities needed as input e.g. M_{π} , f_{π} , f_{K} , $M_{D_{\pi}}$, $M_{B_{\pi}}$
- Numerous post- and predictions
- ▶ Well tested and established
- Subpercent level precision possible
 - \rightarrow Simulate at physical pion mass
 - \rightarrow Account for QED and isospin breaking
 - \rightarrow Good control on all systematic effects (finite volume, discretization, etc.)

Highlights

g – 2

g-2

- ▶ Hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$
 - \rightarrow Separate different contributions
 - \rightarrow Define "windows" to focus on certain parts
- ► Update BMW [BMW Boccaletti et al. arXiv:2407.10913]
 - \rightarrow New simulation at finer physical point ensemble
 - \rightarrow Long distance tail complemented by data driven evaluation
 - \rightarrow Excellent agreement for intermediate window with other lattice determinations
 - \rightarrow SM confirmed to 0.37 ppm
 - \rightarrow 40% improvement compared to BMW 2020
 - →→ Further details at Lattice 2024

Oliver Witzel (University of Siegen)

ρ and \textit{K}^* at the physical point

ρ and ${\it K}^*$ at the physical point

- ▶ Phase shift calculation of the $\pi\pi$ and $K\pi$ scattering amplitudes [RBC/UKQCD Boyle et al. arXiv:2406.19194] [arXiv:2406.19193]
- ▶ Mass and width determination of the vector channel resonance
- Calculation at physical pion mass at one lattice spacing
 - \rightarrow Large uncertainty due to estimating discretization effects
 - \rightsquigarrow Further details at Lattice 2024

- $M_
 ho = 796(5)(50)$ MeV $\Gamma_
 ho = 192(10)(31)$ MeV
- ► M_{K*} = 893(2)(54) MeV Γ_{K*} = 51(2)(11) MeV

 V_{cd}

V_{cd}: PDG reports 1.8% uncertainty

- ▶ PDG averages three different determinations [PDG, Workman et al. PTEP (2022) 083C01]
 - \rightarrow Earlier determination based on neutrino scattering data

 $|V_{cd}|_{PDG}^{\nu} = 0.230 \pm 0.011$

- → Leptonic D^+ → { $\mu^+\nu_{\mu}$, $\tau^+\nu_{\tau}$ } decays: LQCD (FNAL/MILC, ETMC) + experiment (BESIII, CLEO) | $V_{cd}|_{PDG}^{f_D}$ = 0.2181 ± 0.0050
- → Semileptonic $D \rightarrow \pi \ell \nu$: LQCD (ETMC) + experiment (BaBar, BESIII, CLEO-c, Belle) $|V_{cd}|_{PDG}^{D\pi(0)} = 0.2330 \pm 0.014$
- $|V_{cd}|_{PDG} = 0.221 \pm 0.004$

▶ 2023: $D \rightarrow \pi \ell \nu$ and $D_s \rightarrow K \ell \nu$ determinations by FNAL/MILC exploiting full q^2 dependence $|V_{cd}|_{FNAL/MILC}^{D\pi} = 0.2238 \pm 0.0029$ (with BaBar, BESIII, CLEO-c, Belle data) $|V_{cd}|_{FNAL/MILC}^{D_s K} = 0.258 \pm 0.015$ (with BESIII data) [FNAL/MILC PRD107(2023)094516]

V_{cd} : new semileptonic determination exploiting full q^2 dependence $D_s \rightarrow Ke^+ \nu$ $D { ightarrow} \pi \ell^+ \nu$ 1.3% precision Present work dominated by BES III 2019 $D_* \rightarrow Ke^+ \nu$ Present work Semileptonic. $N_f = 2 + 1 + 1$ Semileptonic $N_f = 2 + 1$ HFLAV 2021 Leptonic $\eta_{EW} f_D |V_{cd}| = 46.2(1.0)(0.3)$ нн $N_f = 2 + 1 + 1$ FNAL-MILC Leptonic. H $N_f = 2 + 1$ (Present work) FLAG CKM Semileptonic Unitarity FLAG Leptonic Neutrino PDG Scattering 0.20 0.22 0.24 0.26 0.28 0.30 $|V_{cd}|$

[FNAL/MILC PRD107(2023)094516]

$B ightarrow D^* \ell u$

How to determine V_{cb} ?

- Leptonic $B_c
 ightarrow au
 u_{ au}$ decays
 - \rightarrow Experimentally very challenging
- Semileptonic decays
 - ightarrow B or B_s initial state
 - \rightarrow Inclusive decays

Progress toward first lattice determination

 \rightarrow Exclusive decays

hadronic pseudoscalar final state hadronic vector final state

 $B
ightarrow D^* \ell
u$ experimentally preferred (BaBar, Belle, Belle II, LHCb)

► Long standing 2 − 3σ discrepancy between inclusive and exclusive

Exclusive semi-leptonic decays on the lattice

▶ Treat D^* as QCD-stable particle (narrow-width approximation)

▶ Conventionally parametrized placing the B meson at rest in terms of

$$\frac{d\Gamma(B \to D^* \ell \nu)}{dq^2} = \mathcal{K}_{D^*}(q^2, m_\ell) \cdot |\mathcal{F}(q^2)|^2 \cdot |V_{cb}|^2$$
experiment known theory input CKM (nonperturbative)

▶ Calculate hadronic matrix elements for form factors f(w), g(w), $\mathcal{F}_1(w)$, $\mathcal{F}_2(w)$ with $w = v_{D^*} \cdot v_B$

Three lattice calculations over the full q^2 range

 $\blacktriangleright B \to D^* \ell \nu$

FNAL/MILC 2021 [Bazavov et al. EPJC 82 (2022) 1141] HPQCD 2023 [Harrison, Davies, PRD 109 (2024) 094515] JLQCD 2023 [Y. Aoki et al. PRD 109 (2024) 074503]

- \blacktriangleright Some tension in the shape of the form factors
 - \rightarrow Limited range in w (FNAL/MILC, JLQCD)
 - \rightarrow Slope not well enough constraint
 - \rightarrow HQET ratios to be scrutinized

 \rightsquigarrow Further details at Lattice 2024

Combined analysis [Bordone, Jüttner, arXiv:2406.10074]
 Belle 2023 [Belle PRD 108 (2023) 012002]
 Belle II 2023 [Belle II PRD 108 (2023) 092013]

mixing and lifetimes

Neutral $B_{(s)}$ meson mixing

Standard model process described by box diagrams

- ▶ Top quark contribution dominates
 - \Rightarrow short-distance process
 - \rightarrow Describe by point-like 4-quark operators
- ▶ Parameterize experimentally measured oscillation frequencies Δm_q for q = d, s by

$$\Delta m_{q} = \frac{G_{F}^{2} m_{W}^{2}}{6\pi^{2}} \eta_{B} S_{0} M_{B_{q}} f_{B_{q}}^{2} \hat{B}_{B_{q}} \left| V_{tq}^{*} V_{tb} \right|^{2}$$

→ Nonperturbative contribution: decay constant $f_{B_q}^2$ times bag parameter \hat{B}_{B_q} → SM: $\mathcal{O}_1^q = \bar{b}^{\alpha} \gamma^{\mu} (1 - \gamma_5) q^{\alpha} \ \bar{b}^{\beta} \gamma_{\mu} (1 - \gamma_5) q^{\beta}$

Heavy meson lifetimes ($\Delta B = 0$ operators)

- ► Using heavy quark expansion (HQE), lifetimes of heavy mesons are described by 4-quark operators with ΔB = 0
- ▶ Operators Q_1 , Q_2 , τ_1 , τ_2 , contribute
- ► $\Delta B = 0$ operators mix under renormalization → To date no complete LQCD determination (only exploratory work 20+ years ago)
- \blacktriangleright Quark-line disconnected contributions \rightarrow Notoriously noisy, hard to calculate on the lattice

Pioneering calculation with new renormalization procedure

[Black, Harlander, Lange, Rago, Shindler, OW PoS Lattice 263] \rightsquigarrow update by M. Black at Lattice 2024

- Simplified calculation with some caveats for "neutral" charm-strange meson
- ▶ Use gradient flow in combination with short-flow-time expansion to renormalize operators
 - \rightarrow Suppresses operator mixing on the lattice
 - $_{\rightarrow}$ Take $a \rightarrow 0$ continuum limit as function of the gradient flow time τ
 - \rightarrow Account for operator mixing as part of PT matching to $\overline{\text{MS}}$ in the continuum
- ▶ Validation: (short distance) meson mixing

Highlights

- ▶ g 2 updated value for a_{μ} [BMW]
- \blacktriangleright Physical point calculation of ϱ and K^* [RBC/UKQCD]
- ▶ New determination of V_{cd} [Fermilab/MILC]
- ▶ Updates on $B \rightarrow D^* \ell \nu$ [Fermilab/MILC, HPQCD, JLQCD]
- ▶ First steps to determine heavy meson lifetimes on the lattice [Black et al.]