ICHEP 2024 PRAGUE

42nd International Conference on High Energy Physics

July 17-24 2024 Prague · Czech Republic

Combination of highly correlated measurements of the muon precession frequency in magnetic field for the FNAL measurement of the muon magnetic anomaly

Alberto Lusiani for the FNAL Muon *g***−**2 collaboration <https://orcid.org/0000-0002-6876-3288>

▶ systematic uncertainties from ω_a^m , $\tilde{\omega}_p'(\mathcal{T})^m$, C_i , B_i , external inputs

ω ₂ FNAL-E989 Run 2+3 measurements

Alberto Lusiani (orcid:0000-0002-6876-3288) – ICHEEP 2024, Prague, 17-24 July 2024 3 / 3 / 14

ω _a measurements consistency checks

Estimating uncertainty on residual σ_{i-i}

Estimating residual uncertainties on data with bootstrap method

bootstrap method

^I divide *!^a* data sample in [∼]²⁰⁰ equal-size subsamples

I assemble ∼200 full-size "bootstrap" data samples by random extraction, with repetition

$$
\triangleright \text{ compute } \sigma_{j-i}^2 = \left\langle \left(\omega_a^j - \omega_a^i \right)^2 \right\rangle \quad \text{on bootstrap samples}
$$

Modeling residual uncertainties

findings from bootstrap studies

- ► confirmed $\sigma_{T-A}^2 = \sigma_T^2 \sigma_A^2$ for T vs. A method measurements
- \triangleright for measurements *i*, *j* with same σ_{ij} , σ_{T-A} = constant · σ_{ij} (scales with σ_{ij})
	- \Rightarrow model residual uncertainties with $σ_{r, i-i} = σ_{i-i}/σ_{i i}$, relative uncorrelated uncertainty

further modeling assumptions

■ when two analyses differ for >1 features of different categories, sum related variances $\sigma_{$ r, reco=*RW;*ratio−reco=*RE;*non-ratio $=\sigma_{$ r, reco=*RW−r*eco=*RE* $+$ $\sigma_{$ r, ratio−non-ratio \blacktriangleright when two analyses total uncertainties are different, multiply relative variance σ_r^2 by mean variance 2 2

$$
\sigma_{A,\text{reco}=RW-T,\text{reco}=RE}^2 = \left(\sigma_{T-A}^2\right) + \left(\sigma_{r,\text{reco}=RW-\text{reco}=RE}^2 \cdot \frac{\sigma_A^2 + \sigma_T^2}{2}\right)
$$

consistent with model that each measurement has one variance contribution per feature and this variance is product of relative variance σ_r^2 and total variance σ^2

Bootstrap studies results expressed as relative uncorrelated uncertainties

Alberto Lusiani (orcid:0000-0002-6876-3288) – ICHEEP 2024, Prague, 17-24 July 2024 8 / 14 and 2024

Modeled covariance matrix between two ω _a measurents

$$
V_{\omega_a^A, \omega_a^B} = \begin{pmatrix} \sigma_A^2 & \frac{\sigma_A^2 + \sigma_B^2}{2} - \frac{|\sigma_B^2 - \sigma_A^2|}{2} - (\sum_i \sigma_{r,i}^2) \cdot \frac{\sigma_A^2 + \sigma_B^2}{2} \\ \frac{\sigma_A^2 + \sigma_B^2}{2} - (\sum_i \sigma_{r,i}^2) \cdot \frac{\sigma_A^2 + \sigma_B^2}{2} & \sigma_B^2 \end{pmatrix}
$$

\nUsing above covariance, uncertainty on residual between measurements
\n
$$
\sum \Gamma
$$
, ratio, reconstruction RW
\n
$$
\sum \Gamma
$$
, ratio, reconstruction RR

would be: $\sigma_{j-i} = \sigma_T^2 - \sigma_A^2 + \sigma_{r,\text{ RW vs. RE}}^2 \frac{\sigma_A^2 + \sigma_T^2}{2} + \sigma_{r,\text{ ratio vs. non-ratio}}^2 \frac{\sigma_A^2 + \sigma_T^2}{2}$

critical correlation

- by construction, for above covariance, correlation $\rho_{AB} < \sigma_{min}/\sigma_{max}$ (critical correlation)
	- \blacktriangleright discussed later

Residuals' pulls, all comparisons between analyses in same dataset

Run 2,3 datasets

added irreducible systematic uncertainty of 28 ppb to all residuals (otherwise analyses by different groups but same features have expected residual uncertainty $= 0$) 1 outlier, one Q vs. RQ comparison – no Q-RQ bootstrap study, used findings for T-RT

Q measurements not used for a_μ measurements, used just for checks

Critical correlation

- as mentioned earlier, estimated covariancs for checks, by construction, has correlation ρ_{AB} < $\sigma_{\min}/\sigma_{\max}$ (critical correlation)
- this condition alone does not insure that whole correlation matrix may be nevertheless "super-critical" i.e., when used to average ω_s measurements with BLUE / minimum χ^2 , results in negative weights; literature on the topic:
- \triangleright for averages of two measurements, statistics books e.g. G. Cowan, Statistical data analysis, 1998
- \triangleright for averages of many measurements A.Valassi & R.Chierici, EPJC 74 (2014) 2717

BLUE average vs. assumed correlation

- average of 1 A and 1 T method measurements
- T uncertainty 10% larger than A
- true correlation $\rho = \frac{\sigma_A}{\sigma_T}$, $\Rightarrow w_A = 1$, $w_T = 0$
- unstable outcomes for assumed $\rho > \sigma_A/\sigma_T$

BLUE average weights BLUE average uncertainty vs. est...d correlation

Alberto Lusiani (orcid:0000-0002-6876-3288) – ICHEEP 2024, Prague, 17-24 July 2024 12 / 14 12 / 14 12 / 14

Averaging highly correlated measurements with imperfect correlation

 \blacktriangleright minimum χ^2 average of correlated measurement using imprecise correlation can be '''un-physical'' \blacktriangleright especially when conservatively estimating fully correlated systematic uncertainties

Alberto Lusiani (orcid:0000-0002-6876-3288) – ICHEEP 2024, Prague, 17-24 July 2024 13 / 14

FNAL Muon g −2 "safe" averaging of highly correlated
$$
\omega_a
$$
 measurements
\nBLUE / minimum χ^2 averaging weights and uncertainty
\n $w_i = (A^tV^{-1}A)^{-1}A^tV^{-1}, \sigma^2_{av} = w_i^tVw_i$, with V covariance, A model matrix (column of 1's)
\nsafe averaging weights and uncertainty (used for FNAL Muon g−2 Run 1, and Run 2+3)
\nonly use most precise ω_a analyses (A, RA), with in principle exactly the same uncertainty
\n w_i = series of equal weights $\frac{1}{N_{\text{measurements}}}$, $\sigma^2_{av} = w_i^tVw_i$
\nconservative covariance $V_{ij} = \sigma_i \sigma_j$
\n(100% correlation, supercritical if $\sigma_i \neq \sigma_j$, critical if $\sigma_i = \sigma_j$), leading to $\sigma_{av} = \langle \sigma_i \rangle$
\nif $V_{ij} = \sigma_i \sigma_j$ (100% correlation, supercritical if $\sigma_i \neq \sigma_j$, critical if $\sigma_i = \sigma_j$), then $\sigma_{av} = \langle \sigma_i \rangle$
\nsub-optimality of safe averaging used in FNAL Muon g−2
\ncovariance
\nconservative
\nmodel of coensistency checks equal weights
\nmodel for consistency checks optimal (BLUE) weights
\nand degradation of uncertainty for using sub-optimal but safe weights
\nat least one negative optimal weight on all 3 FNAL Muon g−2 Run 2,3 datasets

End

Alberto Lusiani (orcid:0000-0002-6876-3288) – ICHEEP 2024, Prague, 17-24 July 2024 14 / 14 / 14 / 14 / 14 / 14

Backup Slides

Calculation of the muon magnetic anomaly

$$
a_{\mu} = \left[\frac{\omega_a}{\tilde{\omega}'_p(T)}\right] \cdot \left[\frac{\mu'_p(T)}{\mu_e(H)}\right] \left[\frac{\mu_e(H)}{\mu_e}\right] \left[\frac{m_{\mu}}{m_e}\right] \left[\frac{g_e}{2}\right]
$$

measurements by the Muon *g***−2** collaboration

notation

 \blacktriangleright μ'

 μ_e (H) magnetic moment of electron in hydrogen atom

external measurements

- ► $\mu'_{p}(T)/\mu_{e}(H)$ 10.5 ppb precision, Metrologia 13, 179 (1977)
- $\mu_e(H)/\mu_e$ 100 ppt (for n. digits) theory QED calculation, Rev. Mod. Phys. 88 035009 (2016) **■** m_{μ}/m_e 22 ppb precision CODATA 2018 fit, primarily driven by LAMPF 1999 measurements
	- of muonium hyperfine splitting, Phys. Rev. Lett. 82, 711 (1999)
- $g_e/2$ 0.12 ppt, PDG 2023

Toy MC expected distribution of pulls standard deviation

Modeled correlation between different ω _a measurements

