ICHEP 2024 PRAGUE

ichep2024.org

42nd International Conference on High Energy Physics

July 17-24 2024 Prague Czech Republic

Combination of highly correlated measurements of the muon precession frequency in magnetic field for the FNAL measurement of the muon magnetic anomaly

Alberto Lusiani for the FNAL Muon g-2 collaboration https://orcid.org/0000-0002-6876-3288

▶ systematic uncertainties from ω_a^m , $\tilde{\omega}_p'(T)^m$, C_i , B_i , external inputs

ω_a FNAL-E989 Run 2+3 measurements

ω_a measurements consistency checks

Estimating uncertainty on residual σ_{i-i}

Estimating residual uncertainties on data with bootstrap method

bootstrap method

divide ω_a data sample in ~200 equal-size subsamples

- assemble \sim 200 full-size "bootstrap" data samples by random extraction, with repetition

• compute
$$\sigma_{j-i}^2 = \left\langle \left(\omega_a^j - \omega_a^i
ight)^2
ight
angle$$
 on bootstrap samples

Modeling residual uncertainties

findings from bootstrap studies

- confirmed $\sigma_{T-A}^2 = \sigma_T^2 \sigma_A^2$ for T vs. A method measurements
- for measurements *i*, *j* with same σ_{ij} , $\sigma_{T-A} = \text{constant} \cdot \sigma_{ij}$ (scales with σ_{ij})
 - \Rightarrow model residual uncertainties with $\sigma_{r, j-i} = \sigma_{j-i}/\sigma_{ij}$, relative uncorrelated uncertainty

further modeling assumptions

when two analyses differ for >1 features of different categories, sum related variances σ²_r, reco=RW,ratio-reco=RE,non-ratio = σ²_r, reco=RW-reco=RE + σ²_r, ratio-non-ratio
 when two analyses total uncertainties are different, multiply relative variance σ²_r by mean variance σ²_{A,reco=RW-T,reco=RE} = (σ²_{T-A}) + (σ²_r, reco=RW-reco=RE ⋅ σ²_A+σ²_T) ← consistent with model that each measurement has one variance contribution per feature

consistent with model that each measurement has one variance contribution per feature and this variance is product of relative variance σ_r^2 and total variance σ^2

Bootstrap studies results expressed as relative uncorrelated uncertainties

А,	RA meth	ods			T, RT methods							
		RW	RW	V2 RE				R	W	RW2	2 RE	
	RW2 RE RI1	0.03788 0.08334 0.03157	0.0745 0.0202	50 20 0.07955	_		RW2 RE RI1	0.0363 0.1872 0.0295	32 28 (51 ().18047).02270	,) 0.18160	
A method						Тr	nethod					
		n	on-ratio	ratio-randor	n				non-r	atio	ratio-rando	m
	ratio-random ratio-kernel		om 0.07730 I 0.09289		6		ratio-rar ratio-kei	ndom rnel	0.06 0.08	421 393	0.0726	6

Modeled covariance matrix between two ω_a measurents

$$V_{\omega_{a}^{A},\omega_{a}^{B}} = \begin{pmatrix} \sigma_{A}^{2} & \frac{\sigma_{A}^{2} + \sigma_{B}^{2}}{2} - \left| \sum_{i} \sigma_{r,i}^{2} \right| \cdot \frac{\sigma_{A}^{2} + \sigma_{B}^{2}}{2} - \left(\sum_{i} \sigma_{r,i}^{2} \right) \cdot \frac{\sigma_{A}^{2} + \sigma_{B}^{2}}{2} & \sigma_{B}^{2} \end{pmatrix}$$

$$\bullet \text{ using above covariance, uncertainty on residual between measurements}$$

$$\bullet \text{ T, ratio, reconstruction RW}$$

$$\bullet \text{ A, non-ratio, reconstruction RE}$$

$$\text{ would be: } \sigma_{j-i} = \sigma_{T}^{2} - \sigma_{A}^{2} + \sigma_{r, RW \text{ vs. RE}}^{2} \frac{\sigma_{A}^{2} + \sigma_{T}^{2}}{2} + \sigma_{r, ratio \text{ vs. non-ratio}}^{2} \frac{\sigma_{A}^{2} + \sigma_{T}^{2}}{2}$$

$$\frac{\text{critical correlation}}{\bullet \text{ by construction, for above covariance, correlation } \rho_{A,B} \leq \sigma_{\min}/\sigma_{\max} \quad (\text{critical correlation})$$

$$\bullet \text{ discussed later}$$

Residuals' pulls, all comparisons between analyses in same dataset

Run 2,3 datasets

 added irreducible systematic uncertainty of 28 ppb to all residuals (otherwise analyses by different groups but same features have expected residual uncertainty = 0)
 1 outlier, one Q vs. RQ comparison - no Q-RQ bootstrap study, used findings for T-RT

• Q measurements not used for a_{μ} measurements, used just for checks

Critical correlation

- as mentioned earlier, estimated covariancs for checks, by construction, has correlation $\rho_{A,B} \leq \sigma_{\min}/\sigma_{\max}$ (critical correlation)
- this condition alone does not insure that whole correlation matrix may be nevertheless "super-critical"
 i.e., when used to average ω_a measurements with BLUE / minimum χ², results in negative weights;
 literature on the topic:
 - ▶ for averages of two measurements, statistics books e.g. G. Cowan, Statistical data analysis, 1998
 - ▶ for averages of many measurements A.Valassi & R.Chierici, EPJC 74 (2014) 2717

Averaging highly correlated measurements with imperfect correlation

minimum χ² average of correlated measurement using imprecise correlation can be ''un-physical''
 especially when conservatively estimating fully correlated systematic uncertainties

FNAL Muon
$$g-2$$
 "safe" averaging of highly correlated ω_a measurements

 BLUE / minimum χ^2 averaging weights and uncertainty

 $w_i = (A^tV^{-1}A)^{-1}A^tV^{-1}$, $\sigma_{av}^2 = w_i^tVw_i$, with V covariance, A model matrix (column of 1's)

 safe averaging weights and uncertainty (used for FNAL Muon $g-2$ Run 1, and Run 2+3)

 • only use most precise ω_a analyses (A, RA), with in principle exactly the same uncertainty

 • w_i = series of equal weights $\frac{1}{N_{measurements}}$, $\sigma_{av}^2 = w_i^t V w_i$

 • conservative covariance $V_{ij} = \sigma_i \sigma_j$

 • (100% correlation, supercritical if $\sigma_i \neq \sigma_j$, critical if $\sigma_i = \sigma_j$), leading to $\sigma_{av} = \langle \sigma_i \rangle$

 if $V_{ij} = \sigma_i \sigma_j$ (100% correlation, supercritical if $\sigma_i \neq \sigma_j$, critical if $\sigma_i = \sigma_j$), then $\sigma_{av} = \langle \sigma_i \rangle$

 sub-optimality of safe averaging used in FNAL Muon $g-2$

 covariance weights uncertainty scale

 conservative equal weights $\sim 99.5\%$

 modeled for consistency checks optimal (BLUE) weights $\sim 98.5\%$

 • small degradation of uncertainty for using sub-optimal but safe weights

 • at least one negative optimal weight on all 3 FNAL Muon $g-2$ Run 2,3 datasets

Backup Slides

Calculation of the muon magnetic anomaly

$$\mathbf{a}_{\mu} = \left[\frac{\omega_{a}}{\tilde{\omega}_{p}'(T)}\right] \cdot \left[\frac{\mu_{p}'(T)}{\mu_{e}(H)}\right] \left[\frac{\mu_{e}(H)}{\mu_{e}}\right] \left[\frac{m_{\mu}}{m_{e}}\right] \left[\frac{g_{e}}{2}\right]$$

measurements by the Muon g-2 collaboration

ω _a	precession of muon spin relative to momentum rotation in magnetic field
${\widetilde \omega}_{ ho}'(T)$	precession frequency of shielded proton spin in spherical water sample at $T = 34.7 ^{\circ}\text{C}$ in muon-beam-weighted magnetic field, $\tilde{\omega}'_{\rho}(T) = \langle \omega'_{\rho}(T)(x, y, \varphi) \times M(x, y, \varphi) \rangle$

notation

и

$T_{p}(T)$ magnetic moment of proton in spherical water	sample at 34.7 °C	
---	-------------------	--

 $\mu_e(H)$ magnetic moment of electron in hydrogen atom

external measurements

	$\mu'_{P}(T)$	$)/\mu_e(H)$	10.5 ppb	precision,	Metrologia	13,	179	(1977))
--	---------------	--------------	----------	------------	------------	-----	-----	--------	---

100 ppt (for n. digits) theory QED calculation, Rev. Mod. Phys. 88 035009 (2016)

 \$\mu_e(H)/\mu_e\$ 100 ppt (for n. d
 \$m_\mu/m_e\$ 22 ppb precision CODATA 2018 fit, primarily driven by LAMPF 1999 measurements of muonium hyperfine splitting, Phys. Rev. Lett. 82, 711 (1999)

0.12 ppt, PDG 2023

Toy MC expected distribution of pulls standard deviation

Modeled correlation between different ω_a measurements

	С_Т	E_T	1_Т	S_T	W_T	B_A	C_A	E_A	I_A	S_A	W_A	B_RT	E_RT	I_RT	B_RA	E_RA	K_Q	K_RQ
B_T C_TT E_T S_T B_A C_A E_A S_A B_RT S_A B_RT	C_T 0.967	E_T 0.999 0.967	I_T 0.967 1.000 0.967	S_T 0.999 0.965 0.999 0.965	W_T 1.000 0.967 0.999 0.967 0.999	B_A 0.900 0.891 0.913 0.897 0.915 0.915	C_A 0.871 0.900 0.885 0.906 0.886 0.887 0.994	E_A 0.884 0.875 0.898 0.881 0.900 0.899 1.000 0.994	I_A 0.867 0.896 0.880 0.902 0.882 0.994 1.000 0.994	S_A 0.884 0.898 0.898 0.902 0.999 0.993 0.999 0.993	W_A 0.884 0.875 0.897 0.880 0.899 0.899 1.000 0.994 1.000 0.994 0.999	B_RT 0.993 0.961 0.993 0.961 0.993 0.890 0.862 0.875 0.858 0.875	E_RT 0.995 0.963 0.996 0.963 0.995 0.886 0.857 0.871 0.853 0.871 0.870 0.994	L_RT 0.963 0.996 0.963 0.996 0.963 0.867 0.896 0.871 0.892 0.870 0.871 0.962 0.967	B_RA 0.895 0.887 0.909 0.892 0.911 0.911 0.991 0.986 0.991 0.986 0.990 0.992 0.995	E_RA 0.904 0.895 0.918 0.901 0.920 0.919 0.994 0.988 0.994 0.988 0.993 0.994 0.901 0.901	K_Q 0.765 0.753 0.751 0.751 0.751 0.751 0.751 0.688 0.688 0.676 0.678 0.676 0.676 0.758 0.756 0.750	K_RQ 0.824 0.815 0.811 0.809 0.809 0.809 0.800 0.740 0.722 0.727 0.729 0.728 0.727 0.728 0.727 0.825 0.837 0.819
B_RA E_RA K_Q																0.994	0.682 0.689	0.743 0.754 0.994