

The Latest Results of the MEG II Experiment

W. Ootani ICEPP, University of Tokyo on behalf of the MEG II Collaboration

ICHEP2024, Jul. 17-24, 2024, Prague

Why to Search for $\mu^+ \rightarrow e^+ \gamma$

- Flavour conservation in SM is not protected by gauge symmetry
- • $\mu^+ \rightarrow e^+ \gamma$ should occur in SM with neutrino mass but highly suppressed with tiny neutrino mass (No SM background)
- •Many well-motivated new physics models predict a sizable rate of $\mu^+ \rightarrow e^+ \gamma$

SM(+neutrino osc.) $\mathscr{B}(\mu \to \mathbf{e}\gamma) \sim \mathbf{10}^{-54}$

$\rightarrow e^+\gamma$ search is already sensitive enough to strongly test new physics!

Euro. Phys. J. C(2024)84:190

- ~9000ch waveform readout
- New in MEG II
- •BG-γ suppression by identifying associated low mom. positron

Target BR sensitivity: $6 imes 10^{-14}$ $(\times 10 \text{ better than MEG})$

- •LXe 900L (~2.7ton)
- Highly granular scintillation readout with SiPM(\times 4092) +

- × 512 fast plastic scintillator plates
- •40ps time resolution averaged over multiple hits

- Ultra-low-mass with single gas-volume
- Drift cells with stereo wires

Physics Data Acquired So Far

Physics runs for three years

2021: First physics run where the detector operating conditions were optimised

 \rightarrow Recently published (Euro. Phys. J. C(2024)84:216)

2022: Stable DAQ with optimal detector conditions

2023: Longest physics run

•Observables to characterise $\mu^+ \rightarrow e^+ \gamma$ signal

 $t_{e\gamma}, E_{\gamma}, E_{e}, \theta_{e\gamma}, \phi_{e\gamma}$

- •Blinding signal region
 - Blind box: $48 < E_{\gamma} < 58 \text{ MeV}, |t_{e\gamma}| < 1 \text{ ns}$
 - BG study at sidebands
 - Accidental BG at time sidebands
 - RMD at energy sidebands

• Maximum likelihood analysis to estimate $N_{\rm sig}$

• Likelihood fit to analysis window: $48 < E_{\gamma} < 58 \,\mathrm{MeV}, 52.2 < E_e < 53.5 \,\mathrm{MeV}$ $|t_{e\gamma}| < 0.5 \text{ ns}, |\phi_{e\gamma}| < 40 \text{ mrad}, |\theta_{e\gamma}| < 40 \text{ mrad}$

•Two independent analyses

- Per-event PDFs with two angular observables $\theta_{e\gamma}$, $\phi_{e\gamma}$ (\leftarrow reference)
- •Constant PDFs with single angular observable $\Theta_{e\gamma}$ (\leftarrow crosschecking)

$\mu^+ \rightarrow e^+ \gamma$ Analysis Strategy

Detector Performance Highlight

Significant improvements over MEG

Photon energy

Relative timing

• High-granularity and uniform readout by MPPCs

• Energy resolution: 2.0%/1.8% for (conv. depth: <2cm/>2cm)

• Pielup BG reduction by 35% at 48-58 MeV ($5 \times 10^7 \,\mu/s$)

- Overall resolution: **84** ps
 - $(\leftrightarrow 122 \, ps@MEG)$

0.5

Detector Performance Summary

Resoluition	MEG performance	MEG II achieved value
		with this work
$E_e \text{ (keV)}$	320	90
$\theta_e \text{ (mrad)}$	9.4	7.2
$\phi_e \text{ (mrad)}$	8.7	4.1
z_e/y_e (mm) core	2.4/1.2	2.0/0.7
$E_{\gamma}(\%) \ (w < 2 \text{ cm})/(w > 2 \text{ cm})$	2.4/1.7	2.0/1.8
$u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$	5/5/6	2.5/2.5/5
$t_{e\gamma}$ (ps)	122	84

Efficiency (%)

Trigger	≈ 99	~ 80 \longrightarrow to be improved from 2022 onward (:
Gamma-ray	63	62
Positron	30	67

Significant improvements over MEG

Normalisation

$$\mathscr{B}(\mu^+ \to e^+ \gamma) = \frac{N_{\text{sig}}}{k}$$

•Normalisation factor k

= # effectively measured muons (=1/SES)

•Two independent methods

- Counting Michel positrons
 - Pre-scaled Michel positron trigger
 - Include positron efficiency and beam rate instability

• Counting RMD events

• RMD events in energy sideband

•Combined normalisation factor

 $(2.64 \pm 0.12) \times 10^{12}$

Systematics

• Major sources for systematics

- Detector alignment
- • E_{γ} scale
- Normalisation

•Effect on sensitivity ~4%

• Better controlled than MEG (~13%)

Parameter	Impact on sensitivity
$\phi_{e\gamma}$ uncertainty	1.1%
E_{γ} uncertainty	0.9%
$\theta_{e\gamma}$ uncertainty	0.7%
Normalization uncertainty	0.6%
$t_{e\gamma}$ uncertainty	0.1%
E_e uncertainty	0.1%
RDC uncertainty	< 0.1%

•Sensitivity $S_{90} = 8.8 \times 10^{-13}$

- Median of the 90% UL distribution for pseudo experiments with null-signal hypothesis

Sensitivity

• ULs observed in the four fictitious analysis windows in the timing sidebands are consistent with the sensitivity

Comparable sensitivity w.r.t. MEG (5.3×10^{-13}) only with the first several weeks data

No excess of events over expected BG around signal region

Likelihood Fit

Best fit $N_{\text{sig}} = -2.9 \times 10^{-4} \ (\mathscr{B} = -1.1 \times 10^{-16})$

Projection of fit results

Feldman-Cousins prescription with profile likelihood ratio ordering

Branching ratio upper limit (MEG II): $\mathscr{B}(\mu^+ \rightarrow e^+\gamma) < 7.5 \times 10^{-13}$ (90% C.L.) (sensitivity: 8.8×10^{-13}) MEG+MEG II combined: $\mathscr{B}(\mu^+ \to e^+ \gamma) < 3.1 \times 10^{-13}$ (90% C.L.) (sensitivity: 4.3×10^{-13})

Summary and Prospects

- MEG II in search for $\mu^+ \rightarrow e^+ \gamma$ has been producing physics data since 2021
- Results from the first physics run in 2021
 - No excess over BG-only hypothesis
 - Upper limit: $\mathscr{B}(\mu^+ \rightarrow e^+\gamma) < 7.5 \times 10^{-13}$: (90% C.L.)
 - Combined with MEG: $\mathscr{B}(\mu^+ \rightarrow e^+\gamma) < 3.1 \times 10^{-13}$: (90% C.L.)
 - Comparable sensitivity w.r.t. MEG only with the data for the first several weeks, well demonstrating MEG II capability
- $\cdot \times 10$ more data already acquired until run 2023
 - Results with data 2022 well beyond MEG sensitivity are coming
- Physics run will continue until PSI accelerator shutdown from 2027 to reach the sensitivity goal of 6×10^{-14} ($\times 10$ MEG), hopefully with discovery

See also talk by A. Papa "The X17 search with the MEG II apparatus"

Thank you for your attention!

