PRECISE DECAY RATES FOR $\eta_c \to \gamma \gamma$ and $\eta_b \to \gamma \gamma$ from lattice QCD

20 July 2024

- Decays with photons can be used as tests of our understanding of internal structure of mesons from strong interaction physics
- ★ $\eta_c \rightarrow \gamma \gamma$: experimental results give no clear consensus
 - ▶ Our result vastly improves picture from the lattice
- ★ $\eta_b \rightarrow \gamma \gamma$: not yet seen; our result a prediction for Belle II

This work

 \star Precise calculation by using Highly Improved Staggered Quark (HISQ) action

- ▶ Good action for heavy quarks, c.f. previous HPQCD work
- ★ Calculate these decays with realistic sea
 - ▶ Effect of 2+1+1 quarks
- \star < 1% uncertainties for $\eta_c
 ightarrow \gamma\gamma$, so more accurate now than experiment

Full details of $\eta_c \rightarrow \gamma\gamma$ process in [arXiv:2305.06231]; $\eta_b \rightarrow \gamma\gamma$ to appear soon.

Lattice details

- ★ 2 + 1 + 1 HISQ gauge ensembles provided by MILC Collaboration
- ***** Lattice spacings from $\approx 0.15 \text{ fm}$ down to $\approx 0.03 \text{ fm}$ depending on process
- ***** Combination of $m_s/m_l = 5$ and physical m_l
- ★ Valence heavy quarks $m_c \leq m_h \leq m_b$ also use HISQ formalism
- ★ Quarks tuned so meson matches between lattice and experiment
 - ▶ Charm mass tuned to match J/ψ mesons, see (HPQCD '20 [2005.01845])
 - ▶ Tuned m_b to match η_b mesons

Lattice details

- * 2 + 1 + 1 HISQ gauge ensembles provided by MILC Collaboration
- ***** Lattice spacings from $pprox 0.15 \; {
 m fm}$ down to $pprox 0.03 \; {
 m fm}$ depending on process
- ***** Combination of $m_s/m_l = 5$ and physical m_l
- ★ Valence heavy quarks $m_c \leq m_h \leq m_b$ also use HISQ formalism
- ★ Quarks tuned so meson matches between lattice and experiment
 - ▶ Charm mass tuned to match J/ψ mesons, see (HPQCD '20 [2005.01845])
 - ▶ Tuned m_b to match η_b mesons

Lattice details

- * 2 + 1 + 1 HISQ gauge ensembles provided by MILC Collaboration
- ***** Lattice spacings from $pprox 0.15 \; {
 m fm}$ down to $pprox 0.03 \; {
 m fm}$ depending on process
- ***** Combination of $m_s/m_l = 5$ and physical m_l
- ★ Valence heavy quarks $m_c \leq m_h \leq m_b$ also use HISQ formalism
- ★ Quarks tuned so meson matches between lattice and experiment
 - Charm mass tuned to match J/ψ mesons, see (HPQCD '20 [2005.01845])
 - ▶ Tuned m_b to match η_b mesons

Lattice calculation

Ji & Jung [hep-lat/0101014] & [hep-lat/0103007]:

$$\tilde{C}_{\mu\nu}(t_{\gamma_2}, t_{\eta_h}) = a \sum_{t_{\gamma_1}} e^{-\omega_1(t_{\gamma_1} - t_{\gamma_2})} C_{\mu\nu}(t_{\gamma_1}, t_{\gamma_2}, t_{\eta_h})$$

★ For on-shell photons:

$$\omega_1 = |\vec{q}_1| = |\vec{q}_2| = \frac{M_{\eta_h}}{2}$$

- ***** Impart momentum (θ in picture) to tune ω_1
- ★ Currents require renormalisation; we use RI-SMOM scheme

Fit two sets of correlators:

$$C_{\eta_h}(t, t_{\eta_h}) = \sum_{n=1}^{N} a_n^2 \left(e^{-E_n t} + e^{-E_n(N_t - t)} \right) \quad \mathcal{O}_A \blacklozenge$$

and

Extract

$$\begin{split} \tilde{C}_{\mu\nu}(t_{\gamma_2},t_{\eta_h}) = \sum_n^N a_n b_n \left(e^{-E_n(t_{\gamma_2}-t_{\eta_h})} + e^{-E_n(N_t-t_{\gamma_2}+t_{\eta_h})} \right) \\ \text{form factor } F_{\text{latt}}(0,q_2^2) \text{ by:} \\ \hline \frac{F_{\text{latt}}(0,q_2^2)}{a} = b_0 Z_V^2 \frac{\sqrt{2aM_{\eta_h}^{\text{latt}}}}{aM_{\eta_h}^{\text{latt}}aq_1^y} \end{split}$$

which, when $q_2^2=0, \mbox{ relates to the width for two on-shell photons:}$

$$\Gamma(\eta_h \to \gamma \gamma) = \pi \alpha_{\rm em}^2 Q_h^4 M_{\eta_h}^3 F(0,0)^2.$$

 \mathcal{O}_B

$$\eta_c \to \gamma \gamma$$

$$\frac{F_{\text{latt}}^{(t)}(0,q_2^2)}{a} = \frac{F(0,0)}{(1-\frac{q_2^2}{M_{\text{pole}}^2})} \left[1 + \sum_{i=1}^{i_{\text{max}}} \kappa_{a\Lambda}^{(i,t)} \left(a\Lambda^{(t)} \right)^{2i} + \kappa_{\text{val},c} \delta^{\text{val},c} + \kappa_{\text{sea},c} \delta^{\text{sea},c} \right. \\ \left. + \kappa_{\text{sea},uds}^{(0)} \delta^{\text{sea},uds} \left\{ 1 + \kappa_{\text{sea},uds}^{(1,t)} (a\tilde{\Lambda})^2 + \kappa_{\text{sea},uds}^{(2,t)} (a\tilde{\Lambda})^4 \right\} \right]$$

η_c Results

Continuum result gives

$$F(0,0) = 0.08793(29)_{\rm fit}(26)_{\rm syst} \, {\rm GeV}^{-1}$$

From which we can determine the width:

$$\Gamma(\eta_c \to \gamma\gamma) = 6.788(45)_{\rm fit}(41)_{\rm syst} \text{ keV}$$

Nonrelativistic relations

(Czarnecki & Melnikov '01 [hep-ph/0109054]):

Expectation in nonrelativistic limit:

$$\frac{\Gamma(J/\Psi \to e^+e^-)}{\Gamma(\eta_c \to \gamma\gamma)} \approx \frac{3}{4} \left(1 + \mathcal{O}(\alpha_s) + \mathcal{O}\left(v^2/c^2\right) \right)$$
$$\frac{f_{J/\psi}}{F(0,0)M_{J/\psi}^2} = \frac{1}{2} \left(1 + \mathcal{O}(\alpha_s) + \mathcal{O}\left(v^2/c^2\right) \right)$$

 $M_{J/\psi}$, $f_{J/\psi}$ & $\Gamma(J/\psi \rightarrow e^+e^-)$ (for LO NRQCD central value) from HPQCD '20 [2005.01845]

$$\eta_b \to \gamma \gamma$$

 $\eta_b
ightarrow \gamma \gamma$ from ratio with decay constant

$$\begin{aligned} R_{\eta_b}^{\text{latt}} &= R_{\eta_b}^{\text{phys}} \left[1 + \sum_{a\Lambda}^{i_{\max}} \kappa_{a\Lambda}^{(i)} (a\Lambda)^{2i} + \kappa_{\text{val},b} \delta^{\text{val},b} + \kappa_{\text{sea},c} \delta^{\text{sea},c} \\ &+ \kappa_{\text{sea},uds}^{(0)} \delta^{\text{sea},uds} \{ 1 + \kappa_{\text{sea},uds}^{(1)} (a\tilde{\Lambda})^2 + \kappa_{\text{sea},uds}^{(2)} (a\tilde{\Lambda})^4 \} \right] \end{aligned}$$

$$\begin{aligned} R_{\eta_b}^{\text{phys}} &= 0.468(12); \quad F(0,0) = 0.01751(53) \text{ GeV}^{-1} \end{aligned}$$

$$\Gamma(\eta_b \to \gamma \gamma) = 0.526(32) \text{ keV}$$

 f_{η_b} result for conversion from (HPQCD '21 [2101.08103])

Comparison with LO NRQCD

$$R_{\eta_h} \equiv \frac{f_{\eta_h}}{F_{\eta_h}(0,0)M_{\eta_h}^2} = \frac{1}{2} \left(1 + \mathcal{O}\left(\alpha_s\right) + \mathcal{O}\left(v^2/c^2\right) \right)$$

 $\frac{\Gamma(\eta_b)}{\Gamma(\eta_b \to \gamma\gamma)}$ ★ Can get full width by combining our decay width with from $\Gamma(\eta_b)$ NRQCD (Brambilla, Chung & Komijani [1810.02586]) Preliminary $LQCD + NRQCD_{NNA}$ LQCD + NRQCD_{BFG} -0-1 PDG average This work 15 5 10 0 20 $\Gamma(\eta_b)$ [MeV] $\Gamma(\eta_b)_{\rm NNA} = 12.20 \begin{pmatrix} +42\\ -47 \end{pmatrix}_{\rm NBOCD} (74)_{\rm LQCD} \,{\rm MeV}$ $\Gamma(\eta_b)_{\rm BFG} = 12.68 \begin{pmatrix} +47\\ -53 \end{pmatrix}_{\rm NBOCD} (77)_{\rm LQCD} \, {\rm MeV}$

★ $\Gamma(\eta_c \to \gamma \gamma) = 6.788(45)_{\rm fit}(41)_{\rm syst}$ keV

•
$$F(0,0) = 0.08793(29)_{\rm fit}(26)_{\rm syst} \, {\rm GeV}^{-1}$$

★ $\Gamma(\eta_b \to \gamma \gamma) = 0.526(32)$ keV Preliminary!

• $\Gamma(\eta_b) = 12.20(88)$ MeV (NNA); $\Gamma(\eta_b) = 12.68(93)$ MeV (BFG) Preliminary!

* New/updated information on $\eta_c \rightarrow \gamma \gamma$ to make picture more clear from experiment side would be welcome!

Belle II?

\star We look forward to results from experiment for $\eta_b
ightarrow \gamma\gamma$

EXTRA STUFF

★ Comparison with other lattice calculations for $\Gamma(\eta_c \rightarrow \gamma \gamma)$

***** Comparison with other lattice calculations of $\hat{V}(0)$ for $J/\psi \rightarrow \gamma \eta_c$

 * Comparison with experiment (top) and other theory calculations (bottom) for $\Gamma(J/\psi\to\gamma\eta_c)$

* Product of ${\rm Br}(J/\psi\to\gamma\eta_c)$ and ${\rm Br}(\eta_c\to\gamma\gamma)$ compared to CLEO and BESIII measurements

