Analyzing semileptonic $b \rightarrow u$ transitions with vector and scalar leptoquarks

Tarun Kumar University of Hyderabad

July 18, 2024

Tarun Kumar

July 18, 2024

э

Contents

Introduction and Motivation

Theoretical Framework

Analysis

2

2/36

イロト イヨト イヨト イヨト

Introduction and Motivation

2

3/36

メロト メロト メヨト メヨト

Flavor Changing Charged Current $(b \rightarrow c)$

- With no concrete direct evidence for New Physics (NP) in the experimental sector, indirect channels can be a prominent way to look for NP.
- $\bullet~B$ sector anomalies have hinted at NP presence.
- Experimental values of R(D) and $R(D^*)$ in $b \to c\ell\nu_\ell$ transitions exhibit discrepancies at 1.5σ and 2.5σ , respectively from Standard Model (SM) predictions 1

	Experimental value	SM value
R(D)	0.342 ± 0.026	0.298 ± 0.004
$R(D^*)$	0.287 ± 0.012	0.254 ± 0.005

where

$$R(D^{(*)}) = \frac{Br(B \to D^{(*)}\tau\nu_{\tau})}{Br(B \to D^{(*)}l\nu_l)}$$

• The $b \rightarrow c$ sector is a well-explored sector.

4/36

Flavor Changing Charged Current $(b \rightarrow u)$

- $b \to u \ell \nu_{\ell}$ sector is not extensively probed for NP. We examine the decay channel $B_c \to D \ell \nu_{\ell}$ in this work.
- LHCb future upgrade is expected to measure these modes with sufficient accuracy ².
- Lattice QCD calculations for form factors ³ pertaining to these modes are also available.
- For $b \to u$ transitions, only two decay channels (for $\ell = \tau$) are experimentally observed.

	Experimental value ⁴	Calculated SM value
$B \to \tau \nu_{\tau}$	$1.09 \pm 0.24 \times 10^{-4}$	$0.89 \pm 0.14 \times 10^{-4}$
$B \to \pi \tau \nu_{\tau}$	$<2.5\times10^{-4}$	$1.14 \pm 0.18 \times 10^{-4}$

 Does not have sufficient number of observables to constrain NP. Existing constraints are also not reliable.

²R. Aaij et al. (LHCb Collaboration), arXiv:1808.08865

⁴S. Navas et al. (Particle Data Group), to be published in Phys. Rev. D 110, 030001 (2024).

Tarun Kumar

5/36

³Cooper, Laurence J. and Davies, Christine T. H. and Wingate, Matthew, Phys. Rev. D 105, 014503 (2022)

Motivation to correlate

- Unreliability on existing constraints motivates us to correlate Wilson coefficients of $b \rightarrow u$ to properly observed $b \rightarrow c$ transitions.
- Model dependent approach can be used to correlate and analyze.
- Here, we explore $B_c \to D\tau\nu_{\tau}$ channel within two Leptoquark Models (U_1 and S_1).

イロト イポト イヨト イヨト

Theoretical Framework

2

イロト イヨト イヨト イヨト

Effective Hamiltonian

Including NP contributions, the effective Hamiltonian for $b\to q\ell\nu_\ell$ transitions can be written as

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{qb} [(1+C_{V_L})\mathcal{O}_{V_L} + C_{V_R}\mathcal{O}_{V_R} + C_{S_L}\mathcal{O}_{S_L} + C_{S_R}\mathcal{O}_{S_R} + C_T\mathcal{O}_T],$$

where $q=u~{\rm or}~c;~C_{V_L}~C_{V_R},~C_{S_L},~C_{S_R}$ and C_T are the vector, scalar and tensor Wilson coefficients, and

$$\begin{aligned} \mathcal{O}_{V_L} &= (\bar{q}_L \gamma^\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_{\ell L}) \\ \mathcal{O}_{V_R} &= (\bar{q}_R \gamma^\mu b_R) (\bar{\tau}_L \gamma^\mu \nu_{\ell L}) \\ \mathcal{O}_{S_L} &= (\bar{q}_R b_L) (\bar{\tau}_R \nu_{\ell L}) \\ \mathcal{O}_{S_R} &= (\bar{q}_L b_R) (\bar{\tau}_R \nu_{\ell L}) \\ \mathcal{O}_T &= (\bar{q}_R \sigma^{\mu\nu} b_L) (\bar{\tau}_R \sigma^{\mu\nu} \nu_{\ell L}) \end{aligned}$$

are the four-fermion operators.

KUMPARK
NULLAL

э

イロト イヨト イヨト イヨト

Observables I

• Differential Branching Fraction

$$\begin{split} \frac{dBr}{dq^2}(B \to P\ell\nu_\ell) &= \quad \tau_B \frac{G_F^2 |V_{ub}|^2}{192\pi^3 M_B^3} q^2 \sqrt{\lambda_P(q^2)} (1 - \frac{m_\ell^2}{q^2})^2 \times \\ &\left\{ |1 + C_{V_L} + C_{V_R}|^2 \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) H_{V,0}^2 + \frac{3}{2} \frac{m_\ell^2}{q^2} H_{V,t}^2 \right] \right. \\ &\left. + \frac{3}{2} |C_{S_L} + C_{S_R}|^2 H_S^2 + 8|C_T|^2 \left(1 + \frac{2m_\ell^2}{q^2} \right) H_T^2 \right. \\ &\left. + 3\text{Re}[(1 + C_{V_L} + C_{V_R})(C_{S_L}^* + C_{S_R}^*)] \frac{m_\ell}{\sqrt{q^2}} H_S H_{V,t} \right. \\ &\left. - 12\text{Re}[(1 + C_{V_L} + C_{V_R})C_T^*] \frac{m_\ell}{\sqrt{q^2}} H_T H_{V,0} \right\}, \end{split}$$

Observables II

where

$$H_{V,0}(q^2) = \sqrt{\frac{\lambda_P(q^2)}{q^2}} f_+(q^2),$$

$$H_{V,t}(q^2) = \frac{M_B^2 - M_P^2}{\sqrt{q^2}} f_0(q^2)$$

$$H_S(q^2) = \frac{M_B^2 - M_P^2}{m_b - m_u} f_0(q^2)$$

$$H_T(q^2) = \frac{\sqrt{\lambda_P(q^2)}}{M_B + M_P} f_T(q^2)$$

are helicity amplitudes and $f_0(q^2) \mbox{, } f_+(q^2)$ and $f_T(q^2)$ are the scalar, vector and tensor form factors.

Also,
$$\lambda_P(q^2) = ((M_B - M_P)^2 - q^2)((M_B + M_P)^2 - q^2).$$

イロト イヨト イヨト イヨト

2

Observables III

• Lepton Flavor Universality (LFU) Ratio

$$R = \frac{Br(B_c \to D\tau\nu_{\tau})}{Br(B_c \to Dl\nu_l)}$$

• Forward-Backward Asymmetry (A_{FB})

$$A_{FB} = \frac{\int_0^1 \frac{d^2\Gamma}{dq^2d\cos\theta} \, d\cos\theta - \int_{-1}^0 \frac{d^2\Gamma}{dq^2d\cos\theta} \, d\cos\theta}{d\Gamma/dq^2} = \frac{b_\theta(q^2)}{d\Gamma/dq^2}$$

where the angular decay distribution with respect to q^2 and θ is given by

$$\frac{d^2\Gamma}{dq^2d\cos\theta}(B \to P\ell\nu_\ell) = a_\theta(q^2) + b_\theta(q^2)\cos\theta + c_\theta(q^2)\cos^2\theta,$$

and b_{θ} determines the lepton forward-backward asymmetry.

4		$\gamma \in \gamma$	$\gamma = \gamma$	 *) 4 (*
ICHEP 2024		July 18	, 2024	11/36

$U_1 = (3,1)_{2/3}$ leptoquark model l

- Lagrangian⁵ $\Longrightarrow \mathcal{L} \supset x_{ij}^{LL} \bar{Q}^i \gamma_\mu U_1^\mu P_L L^j + x_{ij}^{RR} \bar{d}_R^i \gamma_\mu U_1^\mu P_R l_R^j$
- Couplings in matrix form

$$x_{ij}^{LL(RR)} = \begin{bmatrix} e & \mu & \tau \\ \lambda_{11}^{L(R)} & \lambda_{12}^{L(R)} & \lambda_{13}^{L(R)} \\ \lambda_{21}^{L(R)} & \lambda_{22}^{L(R)} & \lambda_{23}^{L(R)} \\ \lambda_{31}^{L(R)} & \lambda_{32}^{L(R)} & \lambda_{33}^{L(R)} \end{bmatrix}$$

• Expanding in the mass basis and assuming rotation in the up-type quark sector, we have

$$\mathcal{L} = [(\lambda_{13}^L V_{ud} + \lambda_{23}^L V_{us} + \lambda_{33}^L V_{ub}) \bar{u} \gamma_\mu \nu_\tau + (\lambda_{13}^L V_{cd} + \lambda_{23}^L V_{cs} + \lambda_{33}^L V_{cb}) \bar{c} \gamma_\mu \nu_\tau + \lambda_{33}^L \bar{b}_L \gamma_\mu \tau_L + \lambda_{33}^R \bar{b}_R \gamma_\mu \tau_R] U_1^\mu$$

 5 Arvind Bhaskar, Diganta Das, Tanumoy Mandal, Subhadip Mitra, and Cyrin Neeraj Phys. Rev. D 104, 035016 (2022) $\hfill \label{eq:stars}$

12/36

$U_1 = (3,1)_{2/3}$ leptoquark model l

• Only C_{V_L} and C_{S_R} can be generated in U_1 leptoquark model

$$C_{V_L}(\mu_{LQ}) = \frac{1}{2\sqrt{2}G_F V_{qb}} \frac{\lambda_{q\nu}^L(\lambda_{b\tau}^L)^*}{M_{U_1}^2}$$
$$C_{S_R}(\mu_{LQ}) = -\frac{1}{\sqrt{2}G_F V_{qb}} \frac{\lambda_{q\nu}^L(\lambda_{b\tau}^R)^*}{M_{U_1}^2}$$

13/36

$U_1 = (3,1)_{2/3}$ leptoquark model l

For
$$b \to u$$
 transition

$$C_{V_L}(\mu_{LQ}) = \frac{1}{2\sqrt{2}G_F V_{13}} \frac{\sum_{i=1}^{3} V_{1i} \lambda_{i3}^L \lambda_{33}^L}{M_{U_1}^2} \qquad C_{V_L}(\mu_{LQ}) = \frac{1}{2\sqrt{2}G_F V_{23}} \frac{\sum_{i=1}^{3} V_{2i} \lambda_{i3}^L \lambda_{33}^L}{M_{U_1}^2}$$

$$C_{S_R}(\mu_{LQ}) = -\frac{1}{\sqrt{2}G_F V_{13}} \frac{\sum_{i=1}^{3} V_{1i} \lambda_{i3}^L \lambda_{33}^R}{M_{U_1}^2} \qquad C_{S_R}(\mu_{LQ}) = -\frac{1}{\sqrt{2}G_F V_{23}} \frac{\sum_{i=1}^{3} V_{2i} \lambda_{i3}^L \lambda_{33}^R}{M_{U_1}^2}$$

э.

14/36

イロト イヨト イヨト イヨト

$S_1 = (\bar{3}, 1)_{1/3}$ leptoquark model

- Lagrangian⁶ $\Longrightarrow \mathcal{L} \supset [g_{ij}^L \bar{Q}_i^c(i\tau_2) L_j + g_{ij}^R \bar{u}_i^c \ell_{R_j}] S_1^{\dagger}$
- Couplings in matrix form

$$g_{ij}^{L(R)} = \begin{array}{c} & e & \mu & \tau \\ g_{11}^{L(R)} & g_{12}^{L(R)} & g_{13}^{L(R)} \\ g_{21}^{L(R)} & g_{22}^{L(R)} & g_{23}^{L(R)} \\ g_{21}^{L(R)} & g_{22}^{L(R)} & g_{23}^{L(R)} \\ g_{31}^{L(R)} & g_{32}^{L(R)} & g_{33}^{L(R)} \end{array} \right)$$

• Expanding in the mass basis and assuming rotation in the up-type quark sector, we have

$$\mathcal{L} = \{ [g_{13}^{L}(V_{ud}^{*}\bar{u}^{c} + V_{cd}^{*}\bar{c}^{c}) + g_{23}^{L}(V_{us}^{*}\bar{u}^{c} + V_{cs}^{*}\bar{c}^{c}) + g_{33}^{L}(V_{ub}^{*}\bar{u}^{c} + V_{cb}^{*}\bar{c}^{c})]\tau_{L} \\ - g_{33}^{L}\bar{b}^{c}\nu_{L} + [g_{13}^{R}(V_{ud}^{*}\bar{u}^{c} + V_{cd}^{*}\bar{c}^{c}) + g_{23}^{R}(V_{us}^{*}\bar{u}^{c} + V_{cs}^{*}\bar{c}^{c}) \\ + g_{33}^{R}(V_{ub}^{*}\bar{u}^{c} + V_{cb}^{*}\bar{c}^{c})]\tau_{R} \}S_{1}^{\dagger}$$

 6 Ufuk Aydemir, Tanumoy Mandal and Subhadip Mitra, Phys. Rev. D 101, 015011 (2020) \circ a \sim

$S_1 = (\bar{3}, 1)_{1/3}$ leptoquark model

• Only C_{V_L} , C_{S_L} and C_T can be generated in the S_1 leptoquark model For $b \rightarrow u$ transition $C_{V_L}(\mu_{LQ}) = \frac{1}{2\sqrt{2}G_F V_{13}} \frac{\sum_{i=1}^3 V_{1i} g_{i3}^L g_{33}^L}{2M_{S_1}^2} \qquad C_{V_L}(\mu_{LQ}) = \frac{1}{2\sqrt{2}G_F V_{23}} \frac{\sum_{i=1}^3 V_{1i} g_{i3}^L g_{33}^L}{2M_{S_1}^2}$

$$C_{S_{L}}(\mu_{LQ}) = -\frac{1}{2\sqrt{2}G_{F}V_{13}} \frac{\sum_{i=1}^{3} V_{1i}g_{i3}^{R}g_{i3}^{L}}{2M_{S_{1}}^{2}} \qquad C_{S_{L}}(\mu_{LQ}) = -\frac{1}{2\sqrt{2}G_{F}V_{23}} \frac{\sum_{i=1}^{3} V_{1i}g_{i3}^{L}g_{i3}^{L}}{2M_{S_{1}}^{2}}$$
$$C_{T}(\mu_{LQ}) = -\frac{1}{4}C_{S_{L}}(\mu_{LQ}) \qquad C_{T}(\mu_{LQ}) = -\frac{1}{4}C_{S_{L}}(\mu_{LQ})$$

16/36

<ロ> <四> <四> <四> <三</p>

Renormalization-Group Equations (RGE)

Wilson coefficients at the Leptoquark scale ($\mu_{LQ})$ scale are evolved to the μ_b using RGE 7

$$\begin{pmatrix} C_{V_L}(\mu_b) \\ C_{V_R}(\mu_b) \\ C_{S_L}(\mu_b) \\ C_{S_R}(\mu_b) \\ C_T(\mu_b) \end{pmatrix} \equiv \begin{pmatrix} 1.12 & 0 & 0 & 0 & 0 \\ 0 & 1.07 & 0 & 0 & 0 \\ 0 & 0 & 1.91 & 0 & -0.38 \\ 0 & 0 & 0 & 2.00 & 0 \\ 0 & 0 & 0 & 0 & 0.89 \end{pmatrix} \begin{pmatrix} C_{V_L}(\mu_{LQ}) \\ C_{V_R}(\mu_{LQ}) \\ C_{S_L}(\mu_{LQ}) \\ C_{S_R}(\mu_{LQ}) \\ C_T(\mu_{LQ}) \end{pmatrix}$$

⁷Syuhei Iguro, Teppei Kitahara, Ryoutaro Watanabe, arXiv:2210.10751 (=> (=>)

Analysis

Tarun Kumar

æ

18/36

・ロト ・四ト ・ヨト ・ヨト

Constraints for the new couplings C_i

We use the following observables to constrain the new couplings :

•
$$\underline{b \to c \text{ sector}}$$

 $\implies R(D), R(D^*), P_{\tau}^{D^*} \text{ and } Br(B_c \to \tau \nu_{\tau})$

• $\underline{b \rightarrow u \text{ sector}}$

$$\implies Br(B \to \tau \nu_{\tau}), Br(B \to \pi \tau \nu_{\tau}) \text{ and } R^l_{\pi}$$
 where
$$R^l_{\pi} = \frac{Br(B \to \tau \nu_{\tau})}{Br(B \to \pi l \nu_l)}$$

æ

19/36

イロト 不得 トイヨト イヨト

Observables	Experimental values
$R(D)^1$	0.342 ± 0.026
$R(D^*)^1$	0.287 ± 0.012
$P_{ au}^{D^*8}$	$0.38^{-0.53}_{+0.55}$
$Br(B_c \to \tau \nu_{\tau})$	< 30%
$Br(B \to \tau \nu_{\tau})^4$	$1.09 \pm 0.24 \times 10^{-4}$
$Br(B \to \pi \tau \nu_{\tau})^4$	$<2.5\times10^{-4}$
R_{π}^{l} ⁴	0.727 ± 0.224

Table: Numerical values of observables

⁸S. Hirose et al. (Belle Collaboration) Phys. Rev. Lett. 118, 211801 $\rightarrow 4 \equiv 4 = 4$

	K 1100 01
Idiuli	

2

• Predicted range for various couplings :

Table: U_1 Leptoquark

Couplings	Range
$\lambda_{13}^L \lambda_{33}^L$	[-1.341 - 0.231]
$\lambda_{23}^L \lambda_{33}^L$	[0.271 – 0.833]
$\lambda^L_{33}\lambda^L_{33}$	[-1.991 – 1.642]
$\lambda^L_{13}\lambda^R_{33}$	[-0.011 - 0.089]
$\lambda^L_{23}\lambda^R_{33}$	[-0.261 - 0.059]
$\lambda^L_{33}\lambda^R_{33}$	[-0.321 - 1.972]
C_{V_L}	[-2.234 - 0.568]
C_{S_R}	[-0.131 - 0.039]

Table: S_1 Leptoquark

Couplings	Range
$g_{13}^L g_{33}^L$	[-0.193 – 0.083]
$g^L_{23} g^L_{33}$	[0.150 - 0.917]
$g^L_{33} g^L_{33}$	[-1.665 – 1.874]
$g_{13}^R g_{33}^L$	[-0.095 - 0.170]
$g^R_{23} g^L_{33}$	[-0.776 – 0.438]
$g^R_{33} g^L_{33}$	[-1.972 – 1.772]
C_{V_L}	[0.005 - 0.152]
C_{S_L}	[-0.011 - 0.046]
C_T	[-0.005 - 0.0012]

< □ > < □ > < □ > < □ > < □ >

21/36

2

Analysis

SM and LQ predictions for Br. Ratio, A_{FB} and LFU Ratio

Observables SM		U_1	S_1	
ſ	$Br(B_c \to D\tau\nu_{\tau})$	$(2.17 \pm 0.34) \times 10^{-5}$	$(2.21 - 4.93) \times 10^{-5}$	$(2.19 - 3.02) \times 10^{-5}$
ĺ	A_{FB}	0.280	0.281 - 0.288	0.277 – 0.281
ĺ	R	0.759	0.774 - 1.723	0.766 - 1.054

July 18, 2024

2

イロト イヨト イヨト イヨト

Wilson coefficients correlation (U_1)

Figure: Correlation between Wilson coefficients of $b \rightarrow u$ and $b \rightarrow c$ for U_1 leptoquark

æ

23/36

< □ > < □ > < □ > < □ > < □ >

Wilson coefficients correlation S_1

Figure: Correlation between Wilson coefficients of $b \rightarrow u$ and $b \rightarrow c$ for S_1 leptoquark

K III DO D P
NULLAL

・ロト ・日下・ ・ ヨト・

24 / 36

Analysis

Differential Branching Fraction

Figure: q^2 -dependence of Differential Branching Fraction

all		

2

25 / 36

< □ > < □ > < □ > < □ > < □ >

Lepton Flavor Universality Ratio

Figure: q^2 -dependence of LFU ratio R

aru		

2

26 / 36

・ロト ・日下・ ・ ヨト・

Forward-Backward Asymmetry

Figure: q^2 -dependence of A_{FB}

K III DO D F

2

27/36

< □ > < □ > < □ > < □ > < □ >

Conclusion

K III DO D P
NULLAL

July 18, 2024 28 / 36

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →

Conclusion

- $B_c \to D \tau \nu_{\tau}$ decay mode is analysed within the SM and in the U_1 and S_1 Leptoquark models.
- NP couplings are constrained using available experimental measurements in the $b \to c$ and $b \to u$ sectors.
- Predictions of various observables, such as $dBr(B_c \rightarrow D\tau\nu_{\tau})$, R and A_{FB} in SM as well as in U_1 and S_1 Leptoquark models are presented.
- The observables are found have more sensitivity in the presence of U_1 leptoquark compared to S_1 leptoquark.
- The LFU ratio can have large deviations from the SM and can be tested further to substantiate or rule out NP.
- A_{FB} has less sensitivity to the leptoquarks. A_{FB} in presence of U_1 leptoquark show deviations mainly at high q^2 , where scalar coupling plays a dominating role.
- With future LHCb upgrade and precision measurements, these modes can be measured and tested for any NP sensitivity or constrain NP.

3

イロト 不得 トイヨト イヨト

THANK YOU

æ

▲口> ▲圖> ▲理> ▲理>

BACK UP

31/36

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣○

Conclusion

Form factor I

Form factors can be parametrized as

$$f_{(q^2)} = P(q^2)^{-1} \sum_{n=0}^{N_n} c^{(n)} \hat{z}^{(n,N_n)}$$

where

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

and $c^{(n)}$ is defined in reference. We use the Bourreley-Caprini-Lellouch (BCL) parametrization.

For f_0

$$\hat{z}_0^{(n,N_n)} = z^n$$

For f_+

$$\hat{z}_{+}^{(n,N_n)} = z^n - \frac{n(-1)^{N_n+1-n}}{N_n+1} z_{N_n+1}$$

2

32/36

イロト イヨト イヨト イヨト

Form factor II

 ${\cal P}(q^2)$ is given as

$$P(q^2) = 1 - \frac{q^2}{M_{res}^2}$$

and for f_0 and f_+ the value of M_{res} are

$m_{B(0^+)}$	5.627 GeV
$m_{B(1^{-})}$	5.279 GeV

Results are derived from the Lattice QCD model. Details can be found in ⁹

33 / 36

⁹Cooper, Laurence J. and Davies, Christine T. H. and Wingate, Matthew, Phys. Rev. D 105, 014503 (2022)

Decay Frame

Figure: Angular convention for the process $P \rightarrow P' \tau \nu_t a u$

2

34 / 36

イロト イヨト イヨト イヨト

U_1

Figure: Variation of Wilson coefficients C_{V_L} vs C_{S_R} for U_1 leptoquark

	кт	
	1.56	

2

< □ > < □ > < □ > < □ > < □ >

35 / 36

Figure: Variation of Wilson coefficients C_{V_L} vs C_{S_R} for S_1 leptoquark

Tarun Kumar				
	aru	I N		

2

36 / 36

< □ > < □ > < □ > < □ > < □ >