Short- vs Long-Distance Dynamics in $b \rightarrow s\ell\ell$ decays

Arianna Tinari (University of Zürich) ICHEP Prague, 18-24 July 2024

In collaboration with:

- G. Isidori, Z. Polonsky (2305.03076, 2405.17551)
- M. Bordone, G. Isidori, S. Mächler (2401.18007)

 $b \rightarrow s\ell\ell \, decays$

- Flavor-changing neutral transitions are prime candidates in the search for BSM physics.
- Long-standing tension with the SM in the exclusive $b \to s \bar{\ell} \ell$ in rates and angular distributions, especially in the low- q^2 region (q^2 is the invariant mass of the lepton pair).

- factors and non-local hadronic matrix elements of the four-quark operators)
- Goal: disentangle possible short-distance physics from long-distance dynamics.
- and different uncertainties): inclusive/exclusive level, low/high q^2

Arianna Tinari (University of Zürich)

[LHCb on $B \rightarrow K^* \bar{\mu} \mu$ (2405.17347), see talk by M. Andersson, and CMS on P5' (BPH-21-002)]

On the theoretical side: difficulty of estimating non-perturbative contributions (*i.e.* local form

• It's necessary to look at complementary observables (different sensitivity to SD/LD physics)

Theoretical Challenges in the Inclusive $B \rightarrow X_{c} \ell \ell$

Inclusive $B \to X_{s}\ell\ell$:

- Treated with an Operator Product Expansion (OPE) in $1/m_h$
- In the high- q^2 region:
 - It is affected by large hadronic uncertainties as it is very sensitive to power corrections in the OPE
- Normalizing $B \to X_s \bar{\ell} \ell$ to $B \to X_u \ell \bar{\nu}$ reduces these uncertainties

[Z. Ligeti and F. J. Tackmann, 0707.1694]

Arianna Tinari (University of Zürich)

expansion in
$$\Lambda_{QCD}/(m_b - \sqrt{q^2})$$

ICHEP 2024 Prague, 19.07.2024

Exclusive $B \to K^{(*)} \bar{\ell} \ell$

$$\mathscr{L} = \mathscr{L}_{\text{QCD+QED}}^{[N_f=5]} + \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i \mathcal{O}_i$$

To leading order in QED:

$$\mathcal{A}(B \to M\ell^+\ell^-) = \frac{G_F \alpha V_{ts}^* V_{tb}}{\sqrt{2}\pi} \Big[(C_9 \ \ell\gamma^\mu \ell + C_{10} \ \ell\gamma^\mu \gamma_5 \ell) \langle M | \ \bar{s}\gamma_\mu P_L b | \ \bar{B} \rangle - \frac{1}{q^2} \ell\gamma^\mu \ell \ (2im_b C_7 \langle M | \ \bar{s}\sigma_{\mu\nu} q^\nu P_R b | \ B \rangle + \mathcal{H}_\mu) \Big]$$

$$Local form factors \qquad Non-local form factor \qquad No-local factor \qquad No-local form factor$$

Arianna Tinari (University of Zürich) ICHEP 2024 Prague, 19.07.2024

Theoretical Challenges in the Exclusive $B \to K^{(*)} \bar{\ell} \ell$

$$\mathcal{O}_{1} = (\bar{s}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\beta}) (\bar{c}_{L}^{\beta} \gamma^{\mu} b_{L}^{\alpha}) \qquad \mathcal{O}_{2} = (\bar{s}_{L} \gamma_{\mu} c_{L}) (\bar{c}_{L} \gamma^{\mu} b_{L})$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} b_{R}) F_{\mu\nu} \qquad \mathcal{O}_{8} = \frac{g_{s}}{16\pi^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} T^{a} b_{R}) G_{\mu\nu}^{a}$$

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \ell) \qquad \mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell)$$

& **3** charm-rescattering effects

Inclusive decay rate $\Gamma(B \rightarrow X_{c}\ell\ell)$

SM prediction for the **inclusive rate**:

Significant cancellation of non-perturbative uncertainties since the hadronic structure is **very similar** ($b \rightarrow q_{light}$, left-handed current)

Arianna Tinari (University of Zürich)

[G.Isidori, Z. Polonsky, AT, <u>2305.03076</u>]

[Z. Ligeti and F. J.

$$+\Delta \mathcal{R}_{[q_0^2]}\Big]$$

$$\begin{aligned} \Delta \mathcal{R}_{[15]} &= \frac{\alpha_e^2}{8\pi^2} \Big[C_V^2 + C_V C_L \\ &+ 0.485 C_L + 0.97 C_V + 0.93 + \Delta_{\text{n.p.}} \\ &+ C_7 (1.91 + 2.05 C_L + 4.27 C_7 + 4.1 C_V) \Big] \end{aligned}$$

 $\mathcal{R}_L = \frac{\alpha_e^2 C_L^2}{16 - 2}$

Change of basis: $\{\mathcal{O}_9, \mathcal{O}_{10}\} \rightarrow \{\mathcal{O}_V, \mathcal{O}_L\}$ $\mathcal{O}_V = (\overline{s}_L \gamma_\mu b_L) (\overline{\ell} \gamma^\mu \ell) \qquad C_L = -2C_{10}$ $\mathcal{O}_L = (\overline{s}_L \gamma_\mu b_L) (\overline{\ell}_L \gamma^\mu \ell_L) \qquad C_V = C_9 + C_{10}$

ICHEP 2024 Prague, 19.07.2024

Comparison with data in the inclusive rate

 Agreement in the SM between the inclusive rate and the sum over the leading exclusive modes $B \to K\bar{\ell}\ell, B \to K^*\bar{\ell}\ell, B \to K\pi\bar{\ell}\ell$ (via HHChPT)

$$\sum_{i} \mathcal{B}(B \to X_{s}^{i} \bar{\ell} \ell)_{[15]}^{SM} = (5.07 \pm 0.42) \times 10^{SM}$$
$$\mathcal{B}(B \to X_{s} \bar{\ell} \ell)_{[15]}^{SM} = (4.10 \pm 0.81) \times 10^{SM}$$

• This compatibility opens up the possibility of comparing the inclusive SM prediction and a sum-over-exclusive experimental result (from LHCb):

$$B \to K\bar{\ell}\ell = (0.85 \pm 0.05) \times 10^{-7} \qquad B \to K\pi\bar{\ell}\ell = (0.65) \times 10^{-7} \qquad B \to K\pi\bar{\ell}\ell = (0.65) \times 10^{-7} \qquad B \to K\pi\pi\bar{\ell}\ell = (0.65) \times 10^{-7} \qquad B \to K\pi\bar{\ell}\ell = (0.65) \times 10^{-7$$

$$\blacktriangleright \mathscr{B}(B \to X_s \bar{\ell} \ell)^{exp}_{[15]} = (2.65 \pm 0.17) \times 10^{-7}$$

- Independent verification not sensitive to uncertainties on the form factors
- Sizable uncertainty but mainly experimental on $B \to X_{\mu} \ell \bar{\nu}$

Arianna Tinari (University of Zürich) ICHEP 2024 Prague, 19.07.2024

• Confirmation of sizable suppression on the $b \to s \bar{\mu} \mu$ rates at low q^2 compared to SM predictions

Exclusive modes $B \rightarrow K'$

- The non-local form factors contain the matrix elements of the four-quark operators \mathcal{O}_{1-6} .
- Our goal is to extract information on these matrix elements from data.
- Note that to all orders in α_s , and to first order in α_{em} , these matrix elements have the same structure as the matrix elements of \mathcal{O}_7 and \mathcal{O}_9 :

$$\mathcal{M}(B \to H_{\lambda} \mathcal{C}\ell)|_{C_{1-6}} = -i\frac{32\pi^{2}\mathcal{N}}{q^{2}}\bar{\ell}\gamma^{\mu}\ell\int d^{4}x e^{iqx} \langle H_{\lambda}| T\{j_{\mu}^{\text{em}}(x), \sum_{i=1,6}C_{i}\mathcal{O}_{i}(0)\}|B\rangle = \left(\Delta_{9}^{\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}}\Delta_{7}^{\lambda}\right) \langle H_{\lambda}|\ell^{+}\ell^{-}|\mathcal{O}_{9}|B\rangle$$

• The (regular for $q^2 \rightarrow 0$) contributions of the non-local matrix elements of the four-quark operators can be effectively taken into account by a shift in C_9 :

$$C_9 \rightarrow C_9 + Y^{\lambda}(q^2)$$
 $\lambda = K, \perp, //, 0$

Arianna Tinari (University of Zürich) ICHEP 2024 Prague, 19.07.2024

$$(*)\overline{\ell}\ell$$

Effective shift in C_9

• More precisely, the shift includes:

$$C_{9} \rightarrow C_{9}^{\lambda}(q^{2}) + Y_{q\bar{q}}^{[0]}(q^{2}) + Y_{c\bar{c}}^{\lambda}(q^{2})$$

encodes (factorizable)
perturbative contributions
from 4-quark operators

$$\frac{1}{c\bar{c}} resonances$$

$$We extract the residual contribution to C_{9} from data:$$

$$C_{9}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{F}_{\lambda}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}), q_{0}^{2} = 0$$

$$\Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{F}_{\lambda}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}), q_{0}^{2} = 0$$

$$\Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{F}_{\lambda}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}), q_{0}^{2} = 0$$

$$\Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{F}_{\lambda}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = 0$$

$$\Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{F}_{\lambda}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = \frac{m_{V}\Gamma_{V}}{m_{V}^{2} - q^{2} - im_{V}\Gamma_{V}}$$

$$\Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{F}_{\lambda}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = \frac{m_{V}\Gamma_{V}}{m_{V}^{2} - q^{2} - im_{V}\Gamma_{V}}$$

$$\Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{F}_{\lambda}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = \frac{m_{V}\Gamma_{V}}{m_{V}^{2} - q^{2} - im_{V}\Gamma_{V}}$$

$$\Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{F}_{\lambda}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = \frac{m_{V}\Gamma_{V}}{m_{V}^{2} - q^{2} - im_{V}\Gamma_{V}}$$

$$\Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) = V_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{\mathcal{H}_{\nu}^{2}(q^{2})} \Delta \mathcal{H}_{c\bar{c}}^{\lambda}(q^{2}) + \frac{16\pi^{2}}{m_{V}^{2} - q^{2} - im_{V}\Gamma_{V}}$$

$$= \frac{1}{M_{V}^{2} - q^{2} - im_{V}\Gamma_{V}}}$$

Arianna Tinari (University of Zürich)

To estimate the non-perturbative contributions generated by the $c\bar{c}$ resonances we use dispersive relations in

[M. Bordone, G.Isidori, S. Mächler, AT, <u>2401.18007</u>]

ICHEP 2024 Prague, 19.07.2024

7

Results of the fit for C_9

Arianna Tinari (University of Zürich)

n) | ICHEP 2024 Prague, 19.07.2024

Independent determinations of C_9

Arianna Tinari (University of Zürich)

- We find that the values of C_9 are **consistent** throughout the different modes and polarizations, and that there is no significant q^2 -dependence.
- Opposition to the expected behavior in the case of long-distance contributions beyond those already included.

Charm rescattering in $B^0 \to K^0 \ell \ell$

- We cannot exclude a sizable long-distance contribution with a **reduced** q^2 - or λ dependence which would mimic a shortdistance effect.
- For this reason, we try to estimate the simplest rescattering contribution from the leading twobody intermediate state $D_s D^*$ and $D_s^* D$.

[G.Isidori, Z. Polonsky, AT, <u>2405.17551</u>]

. . .

ICHEP 2024 Prague, 19.07.2024

Charm rescattering in $B^0 \to K^0 \bar{\ell} \ell$

- We estimate this diagram using data on $B \rightarrow DD^*$ and Heavy Hadron Chiral Perturbation Theory (valid for soft kaons).
- Impose SU(3)-light flavor symmetry + heavy quark spin symmetry.
- Our result is **most reliable close to the** q^2 **end-point** (small kaon momentum), and satisfies constraints from gauge invariance.
- The absorptive part is finite and "exact" (no approximations) at the end-point.
- Add form factors for the $DD\gamma$ vertex and for the DDK vertex to extrapolate to the whole kinematical region

Arianna Tinari (University of Zürich)

11

Charm rescattering in $B \rightarrow K\ell\ell$

Arianna Tinari (University of Zürich)

- Relatively **flat** in q^2 (far from narrow resonances)
- We find that these contributions are **not large enough** to explain the bulk of the tension on the value of C_9 .

$$\left|\frac{\Delta C_9}{C_9}\right| \le 3\%$$

$$\mathcal{N} = \frac{\sum_X \mathcal{B}(B^0 \to X)}{\mathcal{B}(B^0 \to D^* D_s) + \mathcal{B}(B^0 \to D D_s^*)} \approx 3$$

 Unaccounted-for LD contributions are unlikely to exceed 8 - 10% of the SD contribution to C_9

D^*D_s	8.0 ± 1.1
DD_s^*	7.4 ± 1.6
$D^*D^*_s$	17.7 ± 1.4
$DD_{s0}(2317)$	1.06 ± 1.6
$D^*D_{s1}(2457)$	9.3 ± 2.2
$D^*D_{s1}(2536)$	0.50 ± 0.14
$DD_{s2}(2573)$	$(3.4 \pm 1.8) \times 10^{-5}$
$D^*D_{s2}(2573)$	< 0.2
$DD_{s1}(2700)$	0.71 ± 0.12

 B^0 Decay

 Not enough to explain the tension with the SM value (the shift needed is of order $\approx 25 \%$)

Conclusions

- QCD effects.
- tension.
- At the inclusive level at high- q^2 , which has a different sensitivity to non-perturbative effects still observe this discrepancy (compatible with results from exclusive)

• Hard to explain the bulk of the tension in $b \to s\bar{\ell}\ell$ observables with only long-distance

• At the exclusive level, data provide no evidence of sizable unaccounted-for long-distance contributions (as we observe no dependence on mode, polarization or q^2), and our estimate of charm-rescattering contributions that mimic short-distance effects cannot explain all the

associated with charm-rescattering and is insensitive to local form factors uncertainties, we

Thanks for your attention!

Comparison with data in the inclusive rate

• Fit of C_V , C_L from SM prediction on inclusive rate to experimental semi-inclusive determination

 Perturbative and non-perturbative corrections due to charmrescattering can be accounted for via a modification of C_V

• If $C_L = C_L^{\text{SM}}$, C_V needs a large correction ($\sim 25 \%$) to explain the data, and it is unlikely that charm re-scattering effects are so large in the high- q^2 region

• Modification of both C_V and C_L could explain well the data \rightarrow possible small LFU-violating amplitude (assuming LF non-universal modification to C_I)

• SM point not included within 2σ

$$\mathcal{M}\left(B \to K\ell^{+}\ell^{-}\right)\big|_{C_{7,9}} = 2\mathcal{N}\left[C_{9}\langle K|\bar{s}_{L}\gamma_{\mu}b_{L}|B\rangle - \frac{2m_{b}}{q^{2}}C_{7}\langle K|\bar{s}_{L}i\sigma_{\mu\nu}q^{\nu}b_{R}|B\rangle\right]\ell\gamma^{\mu}\ell$$
$$= \mathcal{N}C_{9}\left[f_{+}(q^{2})(p_{B}+p_{K})^{\mu} + f_{-}(q^{2})q^{\mu}\right]\ell\gamma^{\mu}\ell$$
$$+ \mathcal{N}C_{7}\frac{f_{T}(q^{2})}{(m_{B}+m_{K})}\left[q^{2}(p_{B}+p_{K})^{\mu} - (m_{B}^{2}-m_{K}^{2})q^{\mu}\right]\left(\frac{2m_{b}}{q^{2}}\right)\ell\gamma^{\mu}\ell$$
(2.5)

and

$$\mathcal{M}\left(B \to K^{*}\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = \mathcal{N}C_{9}\left[-2i\epsilon_{\mu\nu\rho\sigma}(\epsilon^{*})^{\nu}p_{B}^{\rho}p_{K^{*}}^{\sigma}\frac{V(q^{2})}{m_{B}+m_{K^{*}}}\right]$$

$$+q_{\mu}\left(\epsilon^{*}\cdot q\right)\frac{2m_{K^{*}}}{q^{2}}A_{0}(q^{2}) + \left(\epsilon^{*}_{\mu}-q_{\mu}\frac{\epsilon^{*}\cdot q}{q^{2}}\right)(m_{B}+m_{K^{*}})A_{1}(q^{2})$$

$$-\left((p_{B}+p_{K^{*}})_{\mu}-q_{\mu}\frac{m_{B}^{2}-m_{K^{*}}^{2}}{q^{2}}\right)\frac{\epsilon^{*}\cdot q}{m_{B}+m_{K^{*}}}A_{2}(q^{2})\right]\bar{\ell}\gamma^{\mu}\ell$$

$$+\mathcal{N}C_{7}\left[-2i\epsilon_{\mu\nu\rho\sigma}(\epsilon^{*})^{\nu}p_{B}^{\rho}p_{K^{*}}^{\sigma}T_{1}(q^{2}) + (\epsilon^{*}\cdot q)\left(q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{K^{*}}^{2}}\left(p_{B}+p_{K^{*}}\right)_{\mu}\right)T_{3}(q^{2})\right)$$

$$+\left(\epsilon^{*}_{\mu}(m_{B}^{2}-m_{K^{*}}^{2}) - (\epsilon^{*}\cdot q)\left(p_{B}+p_{K^{*}}\right)_{\mu}\right)T_{2}(q^{2})\left[\left(\frac{2m_{b}}{q^{2}}\right)\ell\gamma^{\mu}\ell,\qquad(2.6)$$

$$\begin{split} \mathcal{A}\left(B \to K^{*}\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} &= \mathcal{N}C_{9}\left[-2i\epsilon_{\mu\nu\rho\sigma}(\epsilon^{*})^{\nu}p_{B}^{\rho}p_{K^{*}}^{\sigma}\frac{V(q^{2})}{m_{B}+m_{K^{*}}}\right. \\ &+q_{\mu}\left(\epsilon^{*}\cdot q\right)\frac{2m_{K^{*}}}{q^{2}}A_{0}(q^{2}) + \left(\epsilon^{*}_{\mu}-q_{\mu}\frac{\epsilon^{*}\cdot q}{q^{2}}\right)(m_{B}+m_{K^{*}})A_{1}(q^{2}) \\ &-\left(\left(p_{B}+p_{K^{*}}\right)_{\mu}-q_{\mu}\frac{m_{B}^{2}-m_{K^{*}}^{2}}{q^{2}}\right)\frac{\epsilon^{*}\cdot q}{m_{B}+m_{K^{*}}}A_{2}(q^{2})\right]\bar{\ell}\gamma^{\mu}\ell \\ &+\mathcal{N}C_{7}\left[-2i\epsilon_{\mu\nu\rho\sigma}(\epsilon^{*})^{\nu}p_{B}^{\rho}p_{K^{*}}^{\sigma}T_{1}(q^{2}) + \left(\epsilon^{*}\cdot q\right)\left(q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{K^{*}}^{2}}\left(p_{B}+p_{K^{*}}\right)_{\mu}\right)T_{3}(q^{2}) \\ &+\left(\epsilon^{*}_{\mu}(m_{B}^{2}-m_{K^{*}}^{2}) - \left(\epsilon^{*}\cdot q\right)\left(p_{B}+p_{K^{*}}\right)_{\mu}\right)T_{2}(q^{2})\right]\left(\frac{2m_{b}}{q^{2}}\right)\ell\gamma^{\mu}\ell , \end{split}$$

where

$$q^{\mu} = p_B^{\mu} - p_{K^{(*)}}^{\mu}, \qquad \mathcal{N} = \sqrt{2}G_F \alpha_{\rm em} V_{tb} V_{ts}^* / (4\pi), \qquad (2.7)$$

Back-up

$$\mathcal{M}\left(B \to K\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = \mathcal{N}\left[C_{9} + \frac{2m_{b}}{m_{B} + m_{K}}\frac{f_{T}(q^{2})}{f_{+}(q^{2})}C_{7}\right]f_{+}(q^{2})(p_{B} + p_{K})_{\mu}\bar{\ell}\gamma^{\mu}\ell$$

$$\mathcal{M}\left(B \to K^{*}\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = \mathcal{N}\left\{\left[C_{9} + \frac{2m_{b}(m_{B} + m_{K^{*}})}{q^{2}}\frac{T_{1}(q^{2})}{V(q^{2})}C_{7}\right]\frac{2V(q^{2})}{m_{B} + m_{K^{*}}}i\epsilon_{\mu\nu\rho\sigma}(\epsilon^{*})^{\nu}p_{B}^{\rho}p_{K^{*}}^{\sigma}\right]$$

$$-\left[C_{9} + \frac{2m_{b}(m_{B} + m_{K^{*}})}{q^{2}}\frac{T_{2}(q^{2})}{A_{2}(q^{2})}C_{7}\left(1 + O\left(\frac{q^{2}}{m_{B}^{2}}\right)\right)\frac{A_{2}(q^{2})}{m_{B} + m_{K^{*}}}(\epsilon^{*} \cdot q)(p_{B} + p_{K^{*}})_{\mu}\right]$$

$$+\left[C_{9} + \frac{2m_{b}(m_{B}^{2} - m_{K^{*}})}{q^{2}}\frac{T_{2}(q^{2})}{A_{1}(q^{2})}C_{7}\right]A_{1}(q^{2})(m_{B} + m_{K^{*}})\epsilon_{\mu}^{*}\right]\bar{\ell}\gamma^{\mu}\ell,$$
(2.8)

	q^2 region	Amplitude		
		$B \to K$	2.4	$^{+0.4}_{-0.5}$
	Low a^2	$B \to K^*(\epsilon_{\parallel})$	$3.1^{+0.6}_{-0.6}$	
	LOW Q	$B \to K^*(\epsilon_\perp)$	$2.8^{+0.7}_{-0.7}$	$2.8^{+0.2}_{-0.2}$
		$B \to K^*(\epsilon_0)$	$2.7^{+0.7}_{-0.8}$	
	High q^2	$B \to K$	2.6	$^{+0.4}_{-0.4}$
		$B \to K^*(\epsilon_{\parallel})$	$3.3^{+0.5}_{-0.5}$	
		$B \to K^*(\epsilon_\perp)$	$3.5^{+0.4}_{-0.4}$	$3.4^{+0.3}_{-0.3}$
		$B \to K^*(\epsilon_0)$	$3.5^{+0.6}_{-0.6}$	

Table 4.1: Best-fit points assuming constant C_9 values in the low- and high- q^2 regions, separating or combining the different decay amplitudes, or considering the same value over the full q^2 spectrum for all the decay amplitudes (last column).

$$Y^{\lambda}(q^{2})\big|_{\alpha_{s}^{0}} = Y_{q\bar{q}}^{[0]}(q^{2}) + Y_{c\bar{c}}^{[0]}(q^{2}) + Y_{b\bar{b}}^{[0]}(q^{2}), \qquad (2.14)$$

where

$$\begin{split} Y_{q\bar{q}}^{[0]}(q^2) &= \frac{4}{3}C_3 + \frac{64}{9}C_5 + \frac{64}{27}C_6 - \frac{1}{2}h(q^2,0)\left(C_3 + \frac{4}{3}C_4 + 16C_5 + \frac{64}{3}C_6\right), \\ Y_{c\bar{c}}^{[0]}(q^2) &= h(q^2,m_c)\left(\frac{4}{3}C_1 + C_2 + 6C_3 + 60C_5\right), \\ Y_{b\bar{b}}^{[0]}(q^2) &= -\frac{1}{2}h(q^2,m_b)\left(7C_3 + \frac{4}{3}C_4 + 76C_5 + \frac{64}{3}C_6\right), \end{split}$$

with

$$h(q^2,m) = -\frac{4}{9} \left(\ln \frac{m^2}{\mu^2} - \frac{2}{3} - x \right) - \frac{4}{9} (2+x) \begin{cases} \sqrt{x-1} \arctan \frac{1}{\sqrt{x-1}}, & x = \frac{4m^2}{q^2} > 1, \\ \sqrt{1-x} \left(\ln \frac{1+\sqrt{1-x}}{\sqrt{x}} - \frac{i\pi}{2} \right), & x = \frac{4m^2}{q^2} \le 1. \end{cases}$$

$$\begin{aligned} \mathcal{O}_{1} &= \frac{4\pi}{\alpha_{e}} (\bar{s}_{L} \gamma_{\mu} T^{a} c_{L}) (\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}) & \mathcal{O}_{2} = \frac{4\pi}{\alpha_{e}} (\bar{s}_{L} \gamma_{\mu} c_{L}) (\bar{c}_{L} \gamma^{\mu} b_{L}) \\ \mathcal{O}_{3} &= \frac{4\pi}{\alpha_{e}} (\bar{s}_{L} \gamma_{\mu} b_{L}) \sum_{q} (\bar{q}_{L} \gamma^{\mu} q_{L}) & \mathcal{O}_{4} = \frac{4\pi}{\alpha_{e}} (\bar{s}_{L}^{a} \gamma^{\mu} T^{a} b_{L}^{b}) \sum_{q} (\bar{q}_{L}^{b} \gamma^{\mu} T^{a} q_{L}^{a}) \\ \mathcal{O}_{5} &= \frac{4\pi}{\alpha_{e}} (\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} b_{L}) \sum_{q} (\bar{q}_{L} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} q_{R}) & \mathcal{O}_{6} = \frac{4\pi}{\alpha_{e}} (\bar{s}_{L}^{a} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} T^{a} b_{L}^{b}) \sum_{q} (\bar{q}_{L}^{b} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} T^{a} q_{R}^{a}) \\ \mathcal{O}_{7} &= \frac{m_{b}}{e} (\bar{s}_{L} \sigma^{\mu\nu} b_{R}) F_{\mu\nu} & \mathcal{O}_{8} = \frac{g_{s}}{e^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} T^{a} b_{R}) G_{\mu\nu}^{a} \\ \mathcal{O}_{9} &= (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \ell) & \mathcal{O}_{10} = (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma^{\mu} \gamma_{5} \ell) \end{aligned}$$

$$\mathcal{C}_L = \frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} C_L \,.$$

The corresponding one-loop expression is

$$\mathcal{C}_L^{(0)} = \frac{2G_F^2 m_W^2}{\pi^2} Y_0(x_t) = \frac{y_t^2}{16\pi^2 v^2} \left[1 + O(g^2/y_t^2) \right]$$

Back-up

 $\operatorname{Re}[C_V^{\text{eff}}(q^2 = 15 \text{ GeV}^2)] = 0.43 \pm 0.26$, $\operatorname{Re}[C_V^{\text{eff}}(q^2 = 1 \text{ GeV}^2)] = 0.13 \pm 0.13$.

$$C_V^{(0)}(\mu) = -4Z_0(x_t) + \frac{4}{9} - \frac{4}{9} \ln\left(\frac{\mu^2}{M_W^2}\right)$$
$$\approx 0.22 - 0.89 \times \ln\left(\frac{\mu^2}{m_b^2}\right),$$

)

 $\Delta_{K\pi}^{[15]}$

SM prediction for the inclusive rate

Sum of the SM predictions for the leading exclusive modes

Correction factor due to $B \to K \pi \bar{\ell} \ell$

Back-up

$$\mathcal{B}(B \to X_s \bar{\ell} \ell)_{[15]}^{\text{SM}} = (4.5 \pm 1.0) \times 10^{-7}$$
$$= 4.5 \times 10^{-7} \left[1 \pm 0.16_{\text{exp}} \pm 0.11_{\text{CKM}} \pm 0.09_{\Delta \mathcal{R}}\right]$$

$$\mathcal{B}(B \to K\bar{\ell}\ell)_{[15]}^{\rm SM} = (1.31 \pm 0.08_{\rm lat} \pm 0.09_{\rm par}) \times 10^{-7}$$
$$\mathcal{B}(B \to K^*\bar{\ell}\ell)_{[15]}^{\rm SM} = (3.19 \pm 0.21_{\rm lat} \pm 0.22_{\rm par}) \times 10^{-7}$$
$$\mathcal{B}(B \to (K\pi)_s\bar{\ell}\ell)_{[15]}^{\rm SM} = (5.8 \pm 2.5) \times 10^{-8}$$

$$\mathcal{B}(B \to X_s^i \bar{\ell} \ell)_{[15]}^{\text{SM}} = (5.07 \pm 0.42) \times 10^{-7}$$

$$= \frac{\mathcal{B}(B \to (K\pi)_s \bar{\ell}\ell)_{[15]}}{\mathcal{B}(B \to K\ell)_{[15]} + \mathcal{B}(B \to K^*\ell\ell)_{[15]}} = 0.13 \pm 0.06$$

V	η_V	$ \delta_V $
J/ψ	32.3 ± 0.6	-1.50 ± 0.05
$\psi(2s)$	7.12 ± 0.32	2.08 ± 0.11
$\psi(3770)$	$(1.3 \pm 0.1) imes 10^{-2}$	-2.89 ± 0.19
$\psi(4040)$	$(4.8 \pm 0.8) \times 10^{-3}$	-2.69 ± 0.52
$\psi(4160)$	$(1.5 \pm 0.1) \times 10^{-2}$	-2.13 ± 0.33
$\psi(4415)$	$(1.1 \pm 0.2) \times 10^{-2}$	-2.43 ± 0.43

	V	Polarization	η_V	δ_V
-			26.6 ± 1.1	1.46 ± 0.06
	J/ψ		12.3 ± 0.5	-4.42 ± 0.06
		longitudinal	13.9 ± 0.5	-1.48 ± 0.05
-			3.0 ± 0.9	3.2 ± 0.4
	$\psi(2s)$		1.11 ± 0.30	-3.32 ± 0.22
		longitudinal	1.14 ± 0.06	2.10 ± 0.11

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi} = \\ = \frac{9}{32\pi} \left[I_1^s \sin^2\theta_K + I_1^c \cos^2\theta_K + \\I_2^s \sin^2\theta_K \cos2\theta_\ell + I_2^c \cos^2\theta_K \cos2\theta_\ell + \\I_3 \sin^2\theta_K \sin^2\theta_\ell \cos2\phi + I_4 \sin2\theta_K \sin2\theta_\ell \cos \\I_5 \sin2\theta_K \sin\theta_\ell \cos\phi + I_6 \sin^2\theta_K \cos\theta_\ell + \\I_7 \sin2\theta_K \sin\theta_\ell \sin\phi + I_8 \sin2\theta_K \sin2\theta_\ell \sin\phi + \\I_9 \sin^2\theta_K \sin^2\theta_\ell \sin2\phi \right] ,$$

 q^2

$q^2~({ m GeV^2})$	$ C_9^K$
[1.1, 2]	$1.9^{+0.5}_{-0.8}$
[2,3]	$3.2^{+0.3}_{-0.4}$
[3,4]	$2.6\substack{+0.4 \\ -0.5}$
[4,5]	$2.1\substack{+0.5 \\ -0.7}$
[5,6]	$2.4^{+0.4}_{-0.6}$
[6,7]	$2.6\substack{+0.4 \\ -0.5}$
[7, 8]	$2.3^{+0.5}_{-0.7}$
constant	$ 2.4^{+0.4}_{-0.5} \ (\chi^2/dof = 1.35)$

regions. The p-values for the constant fits are 0.17 (low- q^2) and 0.39 (high- q^2).

Back-up

$q^2 \; ({ m GeV^2})$	$ C_9^K $ (LHCb)	$ C_9^K (ext{CMS})$
[15, 16]	$1.8^{+0.8}_{-1.8}$	$1.4^{+0.9}_{-1.4}$
[16, 17]	$2.1^{+0.7}_{-1.0}$	$1.9^{+0.8}_{-1.9}$
[17, 18]	$2.9^{+0.5}_{-0.5}$	$3.0\substack{+0.5 \\ -0.6}$
[18, 19]	$2.7^{+0.6}_{-0.5}$	
[18, 19.24]		$2.9^{+0.6}_{-0.7}$
[19, 20]	$0^{+1.6}_{-0}$	
[20, 21]	$1.4\substack{+0.9 \\ -1.4}$	
[21, 22]	$3.2\substack{+0.8 \\ -0.9}$	
$\left[19.24,22.9\right]$		$2.5^{+0.7}_{-1.0}$
constant	$2.6 \pm 0.4 \ (\chi^2)$	$^{2}/dof = 1.06)$

Table 3.3: Determinations of C_9 from $B \to K \mu^+ \mu^-$ in the low- q^2 (left) and high- q^2 (right)

q^2 region	Amplitude			
	$B \to K$	$2.4^{+0.4}_{-0.5}$		
Low a^2	$B \to K^*(\epsilon_{\parallel})$	$3.0\substack{+0.6\\-0.6}$		
LOW Q	$B \to K^*(\epsilon_\perp)$	$2.7^{+0.7}_{-0.7}$	$2.8^{+0.2}_{-0.2}$	$(\chi^2$
	$B \to K^*(\epsilon_0)$	$2.7^{+0.7}_{-0.8}$		
	$B \to K$	$2.6^{+0.4}_{-0.4}$		
High a^2	$B \to K^*(\epsilon_{\parallel})$	$3.2^{+0.5}_{-0.5}$		
nign q	$B \to K^*(\epsilon_\perp)$	$3.4^{+0.4}_{-0.4}$	$3.3\substack{+0.3 \\ -0.2}$	$(\chi^2$
	$B \to K^*(\epsilon_0)$	$3.3\substack{+0.6 \\ -0.6}$		

Table 4.1: Best-fit points assuming constant C_9 values in the low- and high- q^2 regions, separating or combining the different decay amplitudes, or considering the same value over the full q^2 spectrum for all the decay amplitudes (last column).

$q^2 \; ({ m GeV^2})$	$ig C_9^{\parallel}$	$ig C_9^\perp$	C_9^0	
[1.1, 2.5]	$2.2^{+1.3}_{-1.2}$	$6.4^{+1.7}_{-1.8}$	$1.4^{+0.9}_{-0.9}$	
[2.5,4]	$4.6^{+1.4}_{-1.4}$	$3.6^{+1.3}_{-1.2}$	$2.6\substack{+0.8\\-1.0}$	
[4,6]	$3.5^{+1.0}_{-1.1}$	$3.5^{+1.1}_{-1.0}$	$2.4^{+0.8}_{-1.2}$	
[6,8]	$3.4^{+0.6}_{-0.6}$	$2.5^{+0.6}_{-0.6}$	$3.1\substack{+0.6 \\ -0.6}$	
constant	$ 2.8^{+0.2}_{-0.2}$	$(\chi^2/{ m dof}$	= 1.26)	
Table 2.4. Determinations of C in diff				

	$\mathcal{L}_{BD}=g_D$	$_{D^*}ig(\Phi^{\mu\dagger}_{D^*_s}\Phi_D\delta)$	$\partial_\mu \Phi_B {+} \Phi_{D_s}^\dagger \Phi_D^\mu$	$_{*}\partial _{\mu }\Phi _{B}ig) + { m h.c.}$
$q^2 \; ({ m GeV^2})$	$ \mathcal{L}_{DK} = \frac{2ig_{\pi}}{f_{T}} $	${m_D\over k}ig(\Phi^{\mu\dagger}_{D^*}\Phi_{D_s}ig)$	$_{R}\partial_{\mu}\Phi_{K}^{\dagger}-\Phi_{D}^{\dagger}\Phi_{I}^{\mu}$	${}^{\iota}_{D^*_s}\partial_\mu \Phi^\dagger_Kig)+{ m h.c}$
[11, 12.5]	$\left[\begin{array}{c} 3.3^{+0.6}_{-0.6} \ \mu_V^{\mu} \end{array} \right]$	$\mathbf{\hat{p}}_{r} = D^{\mu} \Phi^{\nu}_{V} - D^{\mu} \Phi^{\nu}_{V}$	$0.0^{+0.8}$ $D^{ u} \Phi^{\mu}_{V}, 0.9$	
[15, 17]	$3.7^{+0.6}_{-0.7D_{\mu}}$	$\Delta \Phi = \partial_\mu \Phi + i$	$(eA_{\mu}\Phi,~).7$	
[17, 19]	$3.4^{+0.7}_{-1.0}$	$4.0\substack{+0.8\\-0.8}$	$3.7\substack{+0.8\\-0.8}$	
$\operatorname{constant}$	$3.3^{+0.3}_{-0.2}$	$(\chi^2/{ m dof}$	= 0.82)	

Table 3.4: Determinations of C_9 in different q^2 bins from the different polarizations of the $B \to K^* \mu^+ \mu^-$ decay. The p-values for the constant fits are 0.14 (low-q²) and 0.73 (high-q²).

$$\begin{split} \mathcal{L}_{D,\text{free}} &= -\frac{1}{2} \left(\Phi_{D^*}^{\mu\nu} \right)^{\dagger} \Phi_{D^* \mu\nu} - \frac{1}{2} \left(\Phi_{D^*_s}^{\mu\nu} \right)^{\dagger} \Phi_{D^*_s \mu\nu} \\ &+ \left(D_{\mu} \Phi_D \right)^{\dagger} D^{\mu} \Phi_D + \left(D_{\mu} \Phi_{D_s} \right)^{\dagger} D^{\mu} \Phi_{D_s} \\ &+ m_D^2 \left[\left(\Phi_{D^*}^{\mu} \right)^{\dagger} \Phi_{D^* \mu} + \left(\Phi_{D^*_s}^{\mu} \right)^{\dagger} \Phi_{D^*_s \mu} \right] \\ &- m_D^2 \left[\Phi_D^{\dagger} \Phi_D + \Phi_{D_s}^{\dagger} \Phi_{D_s} \right] + \text{h.c.} \end{split} \qquad \Phi_{D^*}^{\mu\nu} = D^{\mu} \Phi_{D^*}^{\nu} - D^{\nu} \Phi_{D^*}^{\mu} \end{split}$$

$$\mathcal{L}_{BD} = g_{DD^*} \left(\Phi_{D_s^*}^{\mu \dagger} \Phi_D \partial_\mu \Phi_B + \Phi_{D_s}^{\dagger} \Phi_{D^*}^{\mu} \partial_\mu \Phi_B \right) + \text{h.c.}$$

$$\begin{split} \Phi_V^{\mu\nu} &= D^\mu \Phi_V^\nu - D^\nu \Phi_V^\mu \,, \\ D_\mu \Phi &= \partial_\mu \Phi + i \, e A_\mu \Phi \,, \end{split}$$

h.c. *.* .