Precision measurements of charged pion decays with the PIONEER Experiment

Toshiyuki Iwamoto The University of Tokyo PIONEER Collaboration

ICHEP2024 @ Prague July 18 2024

Introduction

Gauge interactions are lepton flavor universal in the standard model

important to look for new physics

Any deviation from the universality?

Standard Model of Elementary Particles

2

Hints of lepton flavor violation ?

$$R(D^*) = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu})}$$

R(D), R(D*) deviate from the SM expectation by more than 3σ

• Can be a hint of LFUV between τ and μ

 $(g-2)_l$ $(l = e, \mu, \tau)$ of charged leptons are sensitive probes of LFUV . longstanding $(g-2)_{\mu}$ deviation can be considered as another hint of LFUV when compared to $(g-2)_e$

R(D)

Beta Decays and CKM Unitarity

Unitarity of the CKM matrix $\Delta_{\text{CKM}} \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 0$ $(|V_{ub}|^2 < 10^{-5})$

only V_{ud} and V_{us} are concerned

 $\Delta_{\rm CKM} = (-19.5 \pm 5.3) \times 10^{-4},$ 3.7 σ effect (Cabbibo Angle Anomaly)

This can also be interpreted as a LFUV

- V_{ud} dominant from electron meas.
- V_{us} dominant from muon meas.

 V_{ud}

PIONEER goal

Phase I

- $\begin{array}{ll} R^{\pi}_{e/\mu}=\Gamma(\pi\to e\bar{\nu}_e(\gamma)/\Gamma(\pi\to\mu\bar{\nu}_\mu(\gamma))\\ \\ \text{Improvement by a factor of 15} \end{array}$
- Comparable with the theoretical uncertainty
- NP at the PeV scale can be probed

Phase II & III

$$\frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu)}{\Gamma(\text{Total})}$$

with a precision < 0.2%

- Improvement by a factor of 3 (Phase II) / 10(Phase III)
- CKM unitarity check by theoretically cleanest IV_{ud}I

Exotic searches

Heavy neutral lepton

PIONEER experiment is approved by Paul Scherrer Institute in Switzerland in 2022

Exotic decay search

Search for exotic decays beyond previous limits

• Heavy neutrinos $\pi^+ \rightarrow l^+ \nu_H$

- pion decays to various light dark sector particles
- · lepton-flavor violating decays of the muon into light NP particles $\mu^+ \rightarrow e^+ X_H$

About one order of magnitude for exotic decays in the low mass region 10-120MeV Heavy Neutral Lepton search

6

Basics of pion decays

What a pion decays to "normally" \rightarrow

The helicity suppressed "e" branch \rightarrow

The "beta decay" branch \rightarrow

PIONEER measures

World most intense pion beam

Requirements

- Momentum : 65 MeV/c
- Rate : > $3 \times 10^5 \, \pi$ +/s
- Beam size : σ_x , $\sigma_y < 10$ mm
- Momentum bite : dp/p < 2%
- Contamination : < 10% e, μ

Paul Scherrer Institute

- PiE5 beam line would be the only candidate in terms of rate.
- The beam profile should be tested
- The possibility of other beamlines like PiE1 will be tested too
 - MEG, Mu3e will occupy the PiE5 at least until 2026

Status

Beam quality test in PiE5 beam in 2022

1.4 MW 590 MeV proton accelerator in Paul Scherrer Institute in Switzerland

PIONEER detectors

Intense π⁺ beam

- > 3×10⁵ π+/s
- Available at PSI

Active Target

- Tracking $\pi \rightarrow e/\pi \rightarrow \mu \rightarrow e$ events
- Energy, timing, particle direction
- Position resolution ~ $100 \mu m$
- Timing resolution $\sim 1 \text{ ns}$

Calorimeter

- Positron energy, time
- Depth of ~20 X_0 to reduce low energy events
- Large area acceptance

Tracker

Positron direction between target and calorimeter

Requirements

- Energy response
- 30 keV MIP ~ 4 MeV µ+ Bragg peak •
- High resolution, large dynamic range
- Tracking ($\pi/\mu/e$) •
 - High granularity in (X,Y,Z)
 - 4 MeV μ + travels 0.8mm in Si
- Timing •
 - π/μ hit separation by 1.5ns for 300kHz

Baseline technology

- High granularity Low Gain Avalanche Diode (LGAD) •
- High S/N, full fast collection time, great time resolution •

Status

- R&D of the technology on AC-LGAD, TI-LGAD etc.
- Minimal cross talk, small gain saturation, large dynamic range

Calorimeter

Requirements

- High uniformity, large coverage (3π)
- Sub-ns timing, energy resolution 1.5-2%
- Tail suppression (~20X₀)
- High rate tolerance, pileup separation

Two options

- LXe ~4 t (19X₀)
 - PMT coverage 25% (500)
 - R12699-406-M4 (VUV flat panel PMT)
- · LYSO
 - 236 (or 330) blue PMTs viewing individual crystals

Status

Prototype tests are ongoing with beam test

PIONEER timelines

Funding										
Profile	Operating grants and small supplements									Large purch
	Special R&D award for prototypes									
										Photosenso
Integral of green										Calibration
equals Project										All electron
Request	R&D: Active Target,									
	LXe Prototype and Electronics					ics <mark>E</mark>	Elect	/ DA	Q	

- PSI has a long shutdown between 2027 and 2028 •
- and start the run from 2029

The PIONEER experiment will aim at the detector construction during that,

- The PIONEER experiment will explore the lepton flavor universality violation
 - The experiment was approved with high priority by PSI review committee in 2022 •
- Experimental challenges requires state-of-the-art technology including ATAR, high resolution, deep and fast EM calorimeter, advanced trigger, and detailed simulation
- The PIONEER collaboration grows internationally, and new ideas, expertise, and new collaborators are welcome

Summary

R&D

Energy [MeV] R. Sawada, NIMA581(2007)522

- Energy scale, resolution can be directly extracted from 70 MeV peak and from 53MeV Michel edge in PIONEER (robust calibration possible)
- Sensor calibration, LXe light yield monitoring by LED, α crucial
- Other γ calibration sources (AmBe 4.4MeV, Ni 9MeV, Li 17.6MeV, π^0 55MeV, Cosmics) are optional
- Positron incident position can be measured by trackers
- Each photo sensor time offset might be available from the LGAD time as a reference

Calorimeter concept

$\pi - \mu - e$ background

Target: ~25 X₀, 2% energy resolution at 70 MeV

What is measured in ATAR

