Interpreting inclusive jet and gamma-jet suppression in heavy-ion collisions at the LHC

Agnieszka Ogrodnik, Martin Spousta, Martin Rybař

CHARLES UNIVERSITY

ICHEP Prague, 19.07.2024

Introduction - how can one model jet suppression?

- Jet suppression is not trivial to predict
 - energy loss depends on the flavour, parton shower shapes, path length etc.
- Trying to keep the model **simple**
 - o one could identify which component plays the major role
 - using parametric modelling of parton energy loss

Introduction - how can one model jet suppression?

- Jet suppression is not trivial to predict
 - energy loss depends on the flavour, parton shower shapes, path length etc.
- Trying to keep the model **simple**
 - o one could identify which component plays the major role
 - using parametric modelling of parton energy loss
- This approach was discussed in several papers
 - Eur.Phys.J. C76 (2016) no.2, 50
 - Phys.Lett B767 (2017) 10
 - Nucl.Part.Phys.Proc. 289-290 (2017) 53-58
- Goal: extract basic properties of jet quenching with minimal assumptions on the quenching physics

The parametric modeling of parton energy loss

• Jet spectra are parameterized by power law

$$\frac{dN}{dp_{\rm T}^{\rm jet}} = A \left[f_{q_0} \left(\frac{p_{T_0}}{p_{\rm T}^{\rm jet}} \right)^{n_q} + \left(1 - f_{q_0} \right) \left(\frac{p_{T_0}}{p_{\rm T}^{\rm jet}} \right)^{n_g} \right]$$

The parametric modeling of parton energy loss

• Jet spectra are parameterized by power law

$$\frac{dN}{dp_{\rm T}^{\rm jet}} = A \left[f_{q_0} \left(\frac{p_{T_0}}{p_{\rm T}^{\rm jet}} \right)^{n_q} + \left(1 - f_{q_0} \right) \left(\frac{p_{T_0}}{p_{\rm T}^{\rm jet}} \right)^{n_g} \right]$$

where the exponent is $p_{\rm T}^{\rm jet}$ -dependent:
 $n_i(p_{\rm T}^{\rm jet}) = \sum_{j=0}^{j_{\rm max}} \beta_j \log^j \left(\frac{p_{\rm T}^{\rm jet}}{p_{\rm T_0}} \right)$

The parametric modeling of parton energy loss

• Jet spectra are parameterized by power law

wh

$$\frac{dN}{dp_{\rm T}^{\rm jet}} = A \left[f_{q_0} \left(\frac{p_{T_0}}{p_{\rm T}^{\rm jet}} \right)^{n_q} + \left(1 - f_{q_0} \right) \left(\frac{p_{T_0}}{p_{\rm T}^{\rm jet}} \right)^{n_g} \right]$$

ere the exponent is $p_{\rm T}^{\rm jet}$ -dependent:
 $n_i(p_{\rm T}^{\rm jet}) = \sum_{j=0}^{j_{\rm max}} \beta_j \log^j \left(\frac{p_{\rm T}}{p_{\rm T_0}} \right)$

• Average jet transverse momentum loss modelled using three parameters $\langle \Delta p_{\rm T}^{\rm jet} \rangle_i = c_{F,i} \ s \ \left(\frac{p_{\rm T}^{\rm jet}}{p_{\rm T0}} \right)^{\alpha}$

Including fluctuations

• Energy loss has a **distribution** $w(p_{\rm T}^{\rm jet},\Delta p_{\rm T}^{\rm jet})$ which dictates

quenched jet spectra,

$$\frac{dN_Q}{dp_{\rm T}^{\rm jet}} = \int d\Delta p_{\rm T}^{\rm jet} \frac{dN}{dp_{\rm T}^{\rm jet}} w(p_{\rm T}^{\rm jet}, \Delta p_{\rm T}^{\rm jet})$$

Including fluctuations

• Energy loss has a **distribution** $w(p_{\rm T}^{\rm jet},\Delta p_{\rm T}^{\rm jet})$ which dictates

quenched jet spectra,
$$\frac{dN_Q}{dp_T^{\text{jet}}} = \int d\Delta p_T^{\text{jet}} \frac{dN}{dp_T^{\text{jet}}} w(p_T^{\text{jet}}, \Delta p_T^{\text{jet}})$$

• The average energy loss is then: $\langle \Delta p_{\rm T}^{\rm jet} \rangle = \int d\Delta p_{\rm T}^{\rm jet} \Delta p_{\rm T}^{\rm jet} w(p_{\rm T}^{\rm jet}, \Delta p_{\rm T}^{\rm jet})$

Including fluctuations

• Energy loss has a **distribution** $w(p_{\rm T}^{\rm jet},\Delta p_{\rm T}^{\rm jet})$ which dictates

quenched jet spectra, $\frac{dN_Q}{dp_T^{\text{jet}}} = \int d\Delta p_T^{\text{jet}} \frac{dN}{dp_T^{\text{jet}}} w(p_T^{\text{jet}}, \Delta p_T^{\text{jet}})$

- The **average energy loss** is then: $\langle \Delta p_{\rm T}^{\rm jet} \rangle = \int d\Delta p_{\rm T}^{\rm jet} \Delta p_{\rm T}^{\rm jet} w(p_{\rm T}^{\rm jet}, \Delta p_{\rm T}^{\rm jet})$
- Assume that energy loss distribution depends only on self-normalized fluctuations (c.f. [Phys. Rev. Lett. 122, 252302 (2019)]), $x\equiv p_{\rm T}^{\rm jet}/\langle\Delta p_{\rm T}^{\rm jet}
 angle$
- Energy loss distribution **parameterized** by generalized integrand of gamma function: $w(x) = \frac{c_1^{c_0}}{\Gamma(c_0)} x^{c_0-1} e^{-c_1 x}$

Including more complex parameterizations

• **Logarithmic** dependence of energy loss used e.g. in LBT model also included as an option,

$$\langle \Delta p_{\rm T}^{\rm jet} \rangle = c_F \ s \ \left(\frac{p_{\rm T}^{\rm jet}}{p_{\rm T0}}\right)^{\alpha} \log\left(\frac{p_{\rm T}^{\rm jet}}{p_{\rm T0}}\right)$$

Methodology

- Pythia8 (w/ & w/o nPDF effects) and Herwig 7 used to obtain parameterized quark-and gluon-initiated jet spectra.
- Spectra reweighted to fit the data.
- Energy loss parameters (s, α) from χ² minimization wrt to
 5 TeV jet R_{AA} data [Phys. Lett. B 790, 108 (2019)] for various c_F parameters.
- Energy loss parameters then used to model **other observables**.

Best parameterization

Can describe all centrality bins with single power α =0.27, $c_{\rm F}$ =1.78, when including **nPDF** effects and **fluctuations**.

Label	Spectra	Parameters	$\gamma^2 _{0,-10\%}$	$ \gamma^2 _{\rm all}$	
100001	Speeda		Λ 0-1070		Configuration w/ nPDFs.
p1	P8, nPDF	$lpha_{ m min}=0.27, c_{ m F}=1.78$	0.51	1.06	w/ fluctuations,
p2	P8, nPDF	$\alpha_{\rm min} = 0.24, c_{\rm F} = (9/4)^{1/3}$	0.53	1.05	insensitive to c _F
p3	P8, nPDF	$lpha_{ m min}=0.29, c_{ m F}=9/4$	0.50	1.09	
p4	P8	$\alpha_{\rm min}=0.33, c_{\rm F}=1.78$	0.70	1.06	_
p5	m H7	$lpha_{ m min}=0.30, c_{ m F}=1.78$	0.88	1.18	
p6	P8, nPDF	$\alpha_{\rm min}=0.40, c_{\rm F}=1.78$	0.62	1.53	no fluctuations
p7	P8, nPDF	$\alpha_{\rm min}=0.15, c_{\rm F}=1.78$	0.44	1.43	log-term in energy
				-	IOSS

Label	Spectra	Parameters	$\chi^2 _{0-10\%}$	$\chi^2 _{ m all}$	
p1	P8, nPDF	$\alpha_{\rm min}=0.27, c_{\rm F}=1.78$	0.51	1.06	
$\mathbf{p2}$	P8, nPDF	$\alpha_{\rm min} = 0.24, c_{\rm F} = (9/4)^{1/3}$	0.53	1.05	Worse description
p3	P8, nPDF	$\alpha_{\rm min}=0.29, c_{\rm F}=9/4$	0.50	1.09	without nPDFs
p4	P8	$\alpha_{\rm min}=0.33, c_{\rm F}=1.78$	0.70	1.06	
p5	m H7	$\alpha_{\rm min}=0.30, c_{\rm F}=1.78$	0.88	1.18	
p6	P8, nPDF	$\alpha_{\min} = 0.40, c_{\mathrm{F}} = 1.78$	0.62	1.53	no fluctuations
p7	P8, nPDF	$\alpha_{\rm min}=0.15, c_{\rm F}=1.78$	0.44	1.43	log-term in energy loss

Label	Spectra	Parameters	$\chi^{2} _{0-10\%}$	$\chi^2 _{ m all}$	
p1	P8, nPDF	$\alpha_{\rm min}=0.27, c_{\rm F}=1.78$	0.51	1.06	
$\mathbf{p2}$	P8, nPDF	$lpha_{ m min}=0.24, c_{ m F}=(9/4)^{1/3}$	0.53	1.05	
p3	P8, nPDF	$lpha_{ m min}=0.29, c_{ m F}=9/4$	0.50	1.09	Significantly worse
p4	P8	$\alpha_{\rm min}=0.33, c_{\rm F}=1.78$	0.70	1.06	description without fluctuations
p5	m H7	$\alpha_{\rm min}=0.30, c_{\rm F}=1.78$	0.88	1.18	
p6	P8, nPDF	$\alpha_{\rm min}=0.40, c_{\rm F}=1.78$	0.62	1.53	no fluctuations
p7	P8, nPDF	$\alpha_{\min} = 0.15, c_{\mathrm{F}} = 1.78$	0.44	1.43	log-term in energy loss

Label	Spectra	Parameters	$\chi^{2} _{0-10\%}$	$\chi^2 _{ m all}$	
p1	P8, nPDF	$\alpha_{\rm min}=0.27, c_{\rm F}=1.78$	0.51	1.06	
$\mathbf{p2}$	P8, nPDF	$lpha_{ m min}=0.24, c_{ m F}=(9/4)^{1/3}$	0.53	1.05	
p3	P8, nPDF	$lpha_{ m min}=0.29, c_{ m F}=9/4$	0.50	1.09	
p4	P8	$lpha_{ m min}=0.33, c_{ m F}=1.78$	0.70	1.06	Significantly worse description when using
$\mathbf{p5}$	m H7	$lpha_{ m min}=0.30, c_{ m F}=1.78$	0.88	1.18	log-term
p6	P8, nPDF	$\alpha_{\rm min}=0.40, c_{\rm F}=1.78$	0.62	1.53	no fluctuations
p7	P8, nPDF	$\alpha_{\min} = 0.15, c_{\mathrm{F}} = 1.78$	0.44	1.43	log-term in energy
					IOSS

Path-length dependence of energy loss

 Fitted (Δp_T) can be used to extract path-length dependence of energy loss.

Path-length dependence of energy loss

- Fitted (Δp_T) can be used to extract path-length dependence of energy loss.
- Assumption: path-length proportional to **Glauber model** initial conditions.

Path-length dependence of energy loss

- Fitted (\Delta p_T) can be used to extract path-length dependence of energy loss.
- Assumption: path-length proportional to Glauber model initial conditions.
- Fitted exponent strongly supports quadratic dependence.
- Confirming **radiative nature** of energy loss with minimal model assumptions.

 $\operatorname{Jet} V_2$

$$v_{2} \approx \frac{1}{2} \frac{R_{AA}(L_{in}) - R_{AA}(L_{out})}{R_{AA}(L_{in}) + R_{AA}(L_{out})}$$
$$L_{in} = \langle L \rangle - c \cdot \Delta L_{in}$$
$$L_{out} = \langle L \rangle + c \cdot \Delta L_{out}$$

 $\operatorname{Jet} V_2$

$$v_{2} \approx \frac{1}{2} \frac{R_{AA}(L_{in}) - R_{AA}(L_{out})}{R_{AA}(L_{in}) + R_{AA}(L_{out})}$$
$$L_{in} = \langle L \rangle - c \cdot \Delta L_{in}$$
$$L_{out} = \langle L \rangle + c \cdot \Delta L_{out}$$

 Good agreement with ATLAS data [Phys. Rev. C 105, 064903 (2022)] found for

c = 0.35

• This supports **validity of** L^2 dependence

Jet R_{AA} for Oxygen-Oxygen

- Extracted energy loss in
 2.76 TeV and 5.02 TeV Pb+Pb extrapolated to 7 TeV
- Extracted path-length dependence allows extrapolating from Pb+Pb to O+O using Glauber model.
- Jet R_{AA} of 0.8 at 50 GeV in central O+O collisions – energy loss is expected to be be significant.

Gamma-jet R_{AA} - c_F dependence

- Quenching parametrizations (p1-p3) from inclusive jet R_{AA} were used
- Rather large differences in R_{AA}
 between different c_F values
 - role of flavor in the jet quenching can be constrained with gamma-jet measurement
- Shape qualitatively reproduced below 120 GeV
- Local maximum around 150 GeV not reproduced

Gamma-jet R_{AA} - impact of initial spectra

- Baseline quenching parametrization (pl) used
- Substantial differences in the magnitude of R_{AA}:
 - **Different input spectra reweighting** have less than 10% effect
 - Implementation of nPDF effects
 influences R_{AA} by 15-20%
 - **The choice of MC generator** changes R_{AA} by another ~10%
- Precise **knowledge of input parton spectra crucial** to determine the exact shape of R_{AA}

Gamma-jet R_{AA} - rescaled energy loss

- Selection bias may cause difference in energy loss suffered by jets between gamma-jet and inclusive jet systems
- Quenching parameter s refitted to match gamma-jet R_{AA}
- This is translated to **change in** average path-length
- Ratio between (L_γ)/(L) is 0.80±0.02, 0.9±0.03, and 1.07±0.03 for 0-10%, 10-30%, and 30-80% centrality bins

Gamma-jet R_{AA}- isolated hadrons background

- **Possible contamination** by isolated, predominantly neutral hadrons considered
- The **cross-section** for such process is of **similar order of magnitude** as gamma-jet production
- Large uncertainty in modeling of the very end of the fragmentation spectrum
- The shape of R_{AA} strikingly similar to gamma-jet result

Summary

- Energy loss **fluctuations** are crucial for describing jet quenching.
- $\langle \Delta p_T \rangle \sim p_T^{0.3}$ and **single power** can describe all centrality bins
- $\langle \Delta p_{T} \rangle \sim \langle L \rangle^{2}$, i.e. data strongly supports **radiative energy loss**.
- No RAA-v2 puzzle present in jet data.
- Expecting jet R_{AA} of ~ **0.8** in central **O+O collisions.**
- Energy loss of jets in **gamma-jet system is different** from energy loss of inclusive jets provided quantifications may help understanding biases
- Details and more can be found in <u>arXiv:2407.11234</u>

This work was supported by ERC-CZ grant LL2327