

Measurement of the τ anomalous magnetic moment (g – 2) at CMS

Izaak Neutelings (CERN) on behalf of the CMS Collaboration

izaak.neutelings@cern.ch

18/07/2024, ICHEP

What is *g* – 2 ?

- particles with spin **S** have a **magnetic moment** μ
- obtain quantum corrections with gyromagnetic factor / "g-factor" $g \approx 2.002$ 32 for spin $\frac{1}{2}$
 - ⇒ anomalous magnetic moment $a = \frac{g-2}{2} \approx 0.001 \ 16$

What is *g* – 2 ?

- particles with spin **S** have a magnetic moment μ
- obtain quantum corrections with gyromagnetic factor / "g-factor" $g \approx 2.002$ 32 for spin $\frac{1}{2}$

⇒ anomalous magnetic moment $a = \frac{g-2}{2} \approx 0.001 \, 16$

- measurements of (g 2)_e in Penning traps are the "most precise in physics"
- measurements of $(g 2)_{\mu}$ in storage rings are in longstanding tension with theoretical computations

What is *g* – 2 ?

- particles with spin **S** have a magnetic moment μ
- obtain quantum corrections with gyromagnetic factor / "g-factor" $g \approx 2.002$ 32 for spin $\frac{1}{2}$

⇒ anomalous magnetic moment $a = \frac{g-2}{2} \approx 0.001 \, 16$

- measurements of (g 2)_e in Penning traps are the "most precise in physics"
- measurements of $(g 2)_{\mu}$ in storage rings are in longstanding tension with theoretical computations
- constraints on $(g 2)_{\tau}$ in e⁺e⁻ or PbPb collisions:
 - <u>DELPHI@LEP</u>: $-0.052 < a_{\tau} < 0.013 (95\% \text{ CL})$
 - <u>CMS HIN</u>: $-0.088 < a_{\tau} < 0.056 (68\% CL)$
 - <u>ATLAS HIN</u>: $-0.057 < a_{\tau} < 0.024 (95\% \text{ CL})$
- many BSMs predict enhancement for τ lepton
 e.g. Yukawa-like coupling: ^{m²_τ}/_{m²_μ} ≈ 280
 ⇒ probe for NP ?

 a_{τ}

How can we measure tau g – 2?

a_τ & electric dipole moment *d_τ* can be probed from *γττ* vertex

• FSR $\tau \rightarrow \tau \gamma$ contains 1 $\gamma \tau \tau$ vertices (LEP)

• $\gamma\gamma \rightarrow \tau\tau$ process contains 2 $\gamma\tau\tau$ vertices

- contraints on electromagnetic moments $a_{\tau} \& d_{\tau}$ from form factors or SMEFT
- in the SM: $d_{\tau} \sim 10^{-37}$ ecm via CP violation in CKM, but could be much larger in BSMs

Photon-induced processes

- collide charged particles at high energies
 ⇒ intense electromagnetic fields
 - ⇒ photon-photon collisions
- cross section $\sigma \propto Z^4$
 - \Rightarrow PbPb collisions enhanced w.r.t. pp

$\gamma\gamma \rightarrow \tau\tau$ in ultraperipheral PbPb collisions

- first observation of $\gamma\gamma \rightarrow \tau\tau$ in PbPb by <u>CMS</u> & <u>ATLAS</u> in 2022
- pros:
 - $-\sigma \propto Z^4$ enhancement
 - use "ultraperipheral" collision events
 - clean channel: small backgrounds
- phase space $m_{\tau\tau} \lesssim 40 \; {\rm GeV}$
- CMS:
 - 0.4 nb⁻¹ collected in 2015
 - final state: $\mu \tau_{\rm h}$ (3-prong $\tau_{\rm h}$)

$\gamma\gamma \rightarrow \tau\tau \text{ in pp}$ <u>CMS-SMP-23-005</u>

$\gamma\gamma \rightarrow \tau\tau$ in pp collisions

- cons:
 - no $\sigma \propto Z^4$ enhancement
 - large background
 - high pileup
 - soft signal \Rightarrow low acceptance
- pros w.r.t. PbPb:
 - much larger data set: ~ $O(10^8)$
 - much more sensitive to a_{τ} modifications: expect large BSM enhancement at high τp_{T} and $m_{\tau\tau}$

$\gamma\gamma \rightarrow \tau\tau$ signature

- 2τ leptons
 - opposite charge sign
 - back-to-back: $|\Delta \phi| \approx \pi$

- 2 diffracted protons
 - no hadronic activity close to $\tau\tau$ vertex

CMS Experiment at the LHC, CERN Data recorded: 2018-May-01 13:53:45.602112 GMT Run / Event / LS: 315512 / 65277407 / 69

 $\pi^+\pi^-\pi^+$

CMS Experiment at the LHC, CERN Data recorded: 2018-May-01 13:53:45.602112 GMT Run / Event / LS: 315512 / 65277407 / 69

1 1

 $\pi^+\pi^-\pi^+$

Strategy for $\gamma\gamma \rightarrow \tau\tau$ in pp

- select events with opposite-sign $\tau^+\tau^-$
 - combine 4 $\tau\tau$ final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$
 - exclusivity cuts:
 - back-to-back: acoplanarity $A = 1 \frac{|\Delta \phi|}{\pi} < 0.015$
 - low activity around $\tau\tau$ vertex: $N_{\text{tracks}} = 0$ or 1 in 0.1 cm window

Strategy for $\gamma\gamma \rightarrow \tau\tau$ in pp

- select events with opposite-sign $\tau^+\tau^-$
 - combine 4 $\tau\tau$ final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$
 - exclusivity cuts:
 - back-to-back: acoplanarity $A = 1 \frac{|\Delta \phi|}{\pi} < 0.015$
 - low activity around $\tau\tau$ vertex: $N_{\text{tracks}} = 0 \text{ or } 1$ in 0.1 cm window

- measure corrections to simulation in $\mu\mu$ events (Z $\rightarrow \mu\mu$, $\gamma\gamma \rightarrow \mu\mu$)
- measure $\gamma \gamma \rightarrow \tau \tau$ from observed $m_{\tau \tau}^{\text{vis}}$ shape & yield:
 - sensitive to $m_{\tau\tau}^{\rm vis} > 50$ GeV (above e⁺e⁻ & PbPb, $m_{\tau\tau} \leq 40$ GeV)
 - $-m_{\tau\tau}^{\rm vis} \lesssim 500 \text{ GeV}$ to ensure unitarity in signal samples

Track counting

applied to all simulation

- pileup tracks: compare $N_{\text{tracks}}^{\text{PU}}$ distributions in 0.1 cm z windows (far away from $\mu\mu$ vertex)
- hard scattering tracks: compare $N_{\text{tracks}}^{\text{HS}}$ distributions in 0.1 cm z window around $\mu\mu$ vertex

- applied to photon-induced simulation ($\gamma\gamma \rightarrow \ell\ell$, WW)
- signal samples only include **elastic-elastic** (ee) process generated by gammaUPC
- single-dissociative (sd) and double-dissociative (dd) processes not included
 - have larger cross section
 - can have an exclusive signature

- applied to photon-induced simulation ($\gamma\gamma \rightarrow \ell\ell$, WW)
- signal samples only include elastic-elastic (ee) process generated by gammaUPC
- single-dissociative (sd) and double-dissociative (dd) processes not included
 - have larger cross section
 - can have an exclusive signature
- estimate dissociative contributions (incl. higher-order corrections) by rescaling elastic-elastic $\gamma\gamma \rightarrow \mu\mu$ signal in $\mu\mu$ data
 - $\Rightarrow \text{ measure rescaling factor} = \frac{(ee+sd+dd)_{obs}}{(ee)_{sim}}$

- rescaling factor measured in $m_{\mu\mu}$ distribution in dimuon events with A < 0.015 and N_{tracks} = 0 or 1
- inclusive background (mostly Drell–Yan)
 - estimated from data in $3 \le N_{\text{tracks}} \le 7$ region
 - normalized to Z peak
- elastic $\gamma \gamma \rightarrow \mu \mu$ /WW "signal" (simulated)
 - contributes significantly $m_{\mu\mu}$ > 150 GeV
 - rescale to data to estimate nonelastic contribution

Obs.

7

200

100

300

400

500

600

700

m_{μμ} [GeV]

rescaling factor =
$$\frac{(ee+sd+dd)_{obs}}{(ee)_{sim}} = \frac{Obs. - Bkg.}{\gamma\gamma \rightarrow \mu\mu, WW}$$

800

- rescaling factor measured in $m_{\mu\mu}$ distribution in dimuon events with A < 0.015 and N_{tracks} = 0 or 1
- inclusive background (mostly Drell–Yan)
 - estimated from data in $3 \le N_{\text{tracks}} \le 7$ region
 - normalized to Z peak
- elastic $\gamma \gamma \rightarrow \mu \mu$ /WW "signal" (simulated)
 - contributes significantly $m_{\mu\mu}$ > 150 GeV
 - rescale to data to estimate nonelastic contribution
- fits:
 - linear fit applied as nominal corrections to all elastic simulation ($\gamma\gamma \rightarrow ee, \mu\mu, \tau\tau, WW$)
 - flat fit (~2.7) used to obtain uncertainty (conservative)

rescaling factor =
$$\frac{(ee+sd+dd)_{obs}}{(ee)_{sim}} = \frac{Obs. - Bkg.}{\gamma\gamma \rightarrow \mu\mu, WW}$$

$\gamma\gamma \rightarrow \tau\tau \text{ RESULTS}$ <u>CMS-SMP-23-005</u>

SR with *N*_{tracks} = 0

- after maximum-likelihood fit to observed data
- assuming SM a_{τ} & d_{τ}
- signal clearly visible in high $m_{\rm vis}(\tau\tau)$ bins

SR with N_{tracks} = 1

- after maximum-likelihood fit to observed data
- assuming SM a_{τ} & d_{τ}
- lower signal efficiency, but
 - still adds sensitivity
 - allows for validation of background modeling

N_{tracks} distributions

- same selections as SR, but
 - allowing $N_{\text{track}} < 10$
 - *m*_{vis} > 100 GeV
- combination of
 - all 4 $\tau\tau$ channels
 - all 3 data-taking years
- very nice modeling of N_{track} !
- signal clearly visible

First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions !

• combined observed significance of 5.3σ (6.5 σ expected) assuming SM a_{τ}

 \Rightarrow *first* observation of $\gamma\gamma \rightarrow \tau\tau$ in pp !

combined signal strength

r = 0.75 +0.21 –0.18

w.r.t. gammaUPC elastic prediction × rescaling measured in $\mu\mu$ data

- dominant systematic uncertainties:
 - elastic rescaling to $\gamma\gamma \rightarrow \tau\tau$
 - $N_{\text{tracks}}^{\text{HS}}$ corrections to Drell–Yan

au au channel	Observed	Expected
eμ	2.3σ	3.2σ
$e \tau_h$	3.0σ	2 .1 <i>σ</i>
$\mu au_{ m h}$	2.1σ	3.9σ
$ au_{\rm h} au_{\rm h}$	3.4σ	3.9σ
Combined	5.3σ	6.5σ

CONSTRAINTS ON a_{τ} & d_{τ}

CMS-SMP-23-005

EFT interpretation to contrain a_{τ}

- previous analyses used form factors (DELPHI, ATLAS, CMS), but SMP-23-005 uses an SMEFT approach (equivalent for $q^2 \rightarrow 0$)
- deviations of $\delta a_{\tau} \& \delta d_{\tau}$ from the SM can be parametrized in terms of a BSM Lagrangian with dim-6 operators with NP scale Λ :

$$\mathcal{L}_{\rm BSM} = \overline{L}_{\tau} \sigma^{\mu\nu} \tau_R H \left[\frac{C_{\tau B}}{\Lambda^2} B_{\mu\nu} + \frac{C_{\tau W}}{\Lambda^2} W_{\mu\nu} \right]$$

• contributions to $a_{\tau} \& d_{\tau}$ are linearly dependent on the *complex* Wilson coefficients:

$$\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}\nu}{\Lambda^2} \operatorname{Re}[\cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W}]$$
$$\delta d_{\tau} = \frac{\sqrt{2}\nu}{\Lambda^2} \operatorname{Im}[\cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W}]$$

 scan a_τ & d_τ values in γγ → ττ signal samples by scanning C_{τB} and C_{τW} in matrix element reweighting ⇒ causes variations in the cross section and m_{ττ} distribution

How BSM in a_{τ} affects $\gamma\gamma \rightarrow \tau\tau$

- at m_{ττ} > 100 GeV:
 - cross section grows with $m_{\tau\tau}$
 - same direction for $\delta a_{\tau} > 0 \& \delta a_{\tau} < 0$
- constrain a_{τ} by measuring the **yield** and $m_{\tau\tau}$ distribution of $\gamma\gamma \rightarrow \tau\tau$
- pp data looks at $m_{\tau\tau} > 50 \text{ GeV}$ \Rightarrow better sensitivity than PbPb !

Constraints on a_{τ}

- fit all $m_{\tau\tau}$ distributions
- scan likelihood over a_{τ}
- small $\gamma\gamma \rightarrow \tau\tau$ deficit observed \Rightarrow tighter contraint than expected
- but compatible with the SM

Schwinger: $a_{\tau} = 0.001 \ 161 \ 4$ SM: $a_{\tau} = 0.001 \ 177 \ 21(5)$ our result: $a_{\tau} = 0.0009 \ (32)$ \Rightarrow uncertainty ~3 × Schwinger !

Constraints on a_{τ}

- DELPHI: $a_{\tau} = -0.018 \pm 0.017$
- ATLAS: $a_{\tau} = -0.041 + 0.012 0.009$
- CMS HIN: $a_{\tau} = 0.001 + 0.055 0.089$
- our result: $a_{\tau} = 0.0009 + 0.0032 0.0031$

~2.7x above SM, >5x better than LEP !

OPAL

DELPHI

ATLAS

CMS

CMS

This result

L3

 $ee \rightarrow Z \rightarrow \tau \tau \gamma$

 $\overline{ee} \rightarrow Z \rightarrow \tau \tau \gamma$

30

Constraints on d_{τ}

- Belle: $-1.85 < d_{\tau} < 0.61 \ge 10^{-17} \text{ ecm } (95\%)$
- our result: $-1.70 < d_{\tau} < 1.70 \times 10^{-17} \text{ ecm } (68\%)$

approaching Belle !

Constraints on Wilson coefficients

$$a_{\tau} = a_{\tau}^{\text{SM}} + \delta a_{\tau} = \frac{g^{-2}}{2}$$
$$d_{\tau} = d_{\tau}^{\text{SM}} + \delta d_{\tau}$$

2

32

recast results to make exclusion of $C_{\tau B}/\Lambda^2$ vs. $C_{\tau W}/\Lambda^2$:

$$\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re}[\cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W}]$$

$$\delta d_{\tau} = \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Im}[\cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W}]$$

SUMMARY

Summary

- $(g-2)_{\tau}$ has a strong potential to probe new physics
- ATLAS & CMS have put limits on a_{τ} using PbPb data
 - enjoying from $\sigma \propto Z^4$ and clean signal
 - sensitive to $m_{\tau\tau}$ < 40 GeV
- new results in pp by CMS [<u>SMP-23-005</u>]:
 - using exclusivity cuts on acoplanarity & N_{tracks}
 - fitting shape and yield in $m_{\tau\tau}$ > 50 GeV
 - full Run-2 UL data analyzed in 4 $\tau\tau$ final states
 - first observation of $\gamma\gamma \rightarrow \tau\tau$ process in pp (5.3 σ)
 - puts strongs constraints on
 - $a_{\tau} = 0.0009^{+0.0032}_{-0.0031}$: > 5x better than LEP $\Rightarrow g_{\tau} = 2.0018^{+0.0064}_{-0.0062}$, i.e. 0.3% precision ! \bigcirc
 - $|d_{\tau}| < 1.7 \times 10^{-17} \text{ ecm (68\%)}$: same order as Belle

References

<u>Theory & phenomenology</u>

- gammaUPC (2022) <u>arXiv:2207.03012</u>
- Beresford, Liu (2020) <u>arXiv:1908.05180</u>
- Dynal et al. (2020) <u>arXiv:2002.05503</u>
- Haisch et al. (2023) arXiv:2307.14133
- Beresford et al (2024) <u>arXiv:2403.06336</u>

Experiment

- *a*_e Penning Trap (2023) <u>arXiv:2209.13084</u>
- *a*_μ FNAL (2023) <u>arXiv:2308.06230</u>
- *a*_τ DELPHI (2004) <u>arXiv:hep-ex/0406010</u>
- *d*_τ Belle (2022) <u>arXiv:2108.11543</u>
- $\gamma\gamma \rightarrow$ WW ATLAS (2021) <u>arXiv:2010.04019</u>
- $\gamma\gamma \rightarrow \text{ee} \text{ ATLAS} (2023) \text{ arXiv:} 2207.12781$
- $\gamma\gamma \rightarrow$ tt CMS (2023) <u>arXiv:23w10.11231</u>

$(g-2)_{\tau}$ with UPC PbPb ($m_{\tau\tau}$ < 50 GeV):

- *a*_τ CMS (2022) <u>HIN-21-009</u>
- *a*_τ ATLAS (2022) <u>STDM-2019-19</u>

 $(g-2)_{\tau}$ with pp (50 < $m_{\tau\tau}$ < 500 GeV):

- *a*_τ CMS (2024) <u>SMP-23-005</u>
 - talks: LHC seminar, Moriond, UZH
 - press: <u>CMS</u>, <u>CERN</u>, <u>Courier</u>

Bigger picture

Object reconstruction & selection

- **e**: MVA WP80, $p_{\rm T}$ > 15 GeV, $|\eta|$ < 2.5
- μ : medium ID, medium isolation, $p_T > 10$ GeV, $|\eta| < 2.4$
- τ_h: HPS, p_T > 30 GeV, |η| < 2.3, DeepTau v2p1 (VSe, VSmu, VSjet), four decay modes:

- MET: PFMET reconstruction
- tracks: charged PFC and idate collection in miniAOD, $p_T > 0.5$ GeV, $|\eta| < 2.5$

CMS-SMP-23-005

CMS-SMP-23-005

Inclusive pre-selections

	eμ	$e \tau_h$	$\mu \tau_{\rm h}$	$\tau_{\rm h} \tau_{\rm h}$	μμ
$p_{\rm T}^{\rm e}$ (GeV)	> 15/24	> 25 - 33			
$ \eta^{\mathbf{e}} $	< 2.5	< 2.1 - 2.5			
$p_{\rm T}^{\mu}$ (GeV)	> 24/15		> 21 - 29		> 26 - 29/10
$ \eta^{\mu} $	< 2.4		< 2.1 - 2.4		
$p_{\rm T}^{\tau_{\rm h}}$ (GeV)	—	> 30 - 35	> 30 - 32	> 40	
$ \eta^{ au_{\mathrm{h}}} $		< 2.1 - 2.3	< 2.1 - 2.3	< 2.1	
$m_{\mu\mu}$ (GeV)					> 50
OS	yes	yes	yes	yes	yes
$ d_z(\ell,\ell') $ (cm)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$\Delta R(\ell,\ell')$	> 0.5	> 0.5	> 0.5	> 0.5	> 0.5
$m_{\rm T}({\rm e}/\mu, \vec{p}_{\rm T}^{\rm miss})$ (GeV)		< 75	< 75		

Exclusivity cuts

define **signal regions** based on exclusivity cuts

- acoplanarity $A = 1 \frac{|\Delta \phi|}{\pi}$
 - A < 0.015: >95% signal efficiency, and <30% Drell–Yan efficiency
- N_{tracks} : count tracks with in 0.1 cm window around $\tau\tau$ vertex
 - $\tau\tau$ vertex reconstructed as $z_{\tau\tau} = \frac{1}{2} (z_{\tau_1} + z_{\tau_2})$
 - two categories: N_{tracks} = 0 or 1: ≈75% signal efficiency, and reduces backgrounds (like Drell–Yan) by ~10³

CORRECTIONS

CMS-SMP-23-005

Corrections to simulation

modeling of observed data is not perfect \Rightarrow derive corrections in pure **dimuon** ($\mu\mu$) sample

- **1. acoplanarity in Drell–Yan**
- **2. pileup tracks**: $N_{\text{tracks}}^{\text{PU}}$ in all simulation
- **3. hard scattering tracks**: *N*^{HS}_{tracks}in **Drell–Yan**
- **4. nonelastic contributions** of $\gamma\gamma \rightarrow \ell\ell$ simulation

1. Acoplanarity corrections

- Drell–Yan generated by aMC@NLO does not describe well
 - Z boson $p_{\rm T}$
 - acoplanarity A
- measure corrections in pure $Z/\gamma^* \rightarrow \mu\mu$ sample
- apply correction as a function of
 - acoplanarity A
 - leading and subleading muon $p_{\rm T}$

- use $Z \rightarrow \mu\mu$ events at Z peak, $|m_{\mu\mu} m_Z| < 15 \text{ GeV}$
- count number of PU tracks in small z windows (far away from $\mu\mu$ vertex)
- derive correction from obs. / sim. ratio as a function of z and N_{tracks}

applied to Drell–Yan, VV $\rightarrow 2\ell 2\nu$

3. *N*^{HS}_{tracks} correction

- use $Z \rightarrow \mu\mu$ events at Z peak
- count N_{tracks} in signal window (0.1 cm) around $\mu\mu$ vertex
- separate Drell–Yan into bins of N^{HS}_{tracks} by gen-matching reco tracks

After corrections

- 1. acoplanarity in Drell-Yan
- 2. pileup tracks: $N_{\text{tracks}}^{\text{PU}}$ in all simulation
- 3. hard scattering tracks: *N*^{HS}_{tracks}in **Drell–Yan**

simulation describes observed data well after these corrections !

- $m_{vis}(\tau \tau) < 100 \text{ GeV}$ (low signal efficiency)
- in all $\tau\tau$ final states

- signal samples only include **elastic-elastic** (ee) process generated by gammaUPC
- single-dissociative (sd) and double-dissociative (dd) processes not included
 - have larger cross section
 - can have an exclusive signature
- estimate dissociative contributions (incl. higher-order corrections) by rescaling elastic-elastic $\gamma\gamma \rightarrow \mu\mu$ signal in $\mu\mu$ data
 - $\Rightarrow \text{ measure rescaling factor} = \frac{(ee+sd+dd)_{obs}}{(ee)_{sim}}$

- rescaling factor measured in $m_{\mu\mu}$ distribution in dimuon events with A < 0.015 and N_{tracks} = 0 or 1
- inclusive background (mostly Drell–Yan)
 - estimated from data in $3 \le N_{\text{tracks}} \le 7$ region
 - normalized to Z peak
- elastic $\gamma\gamma \rightarrow \mu\mu$ /WW "signal"
 - contributes significantly $m_{\mu\mu}$ > 150 GeV
 - rescale to data to estimate nonelastic contribution
- fits:
 - linear fit applied as nominal corrections to all elastic simulation ($\gamma\gamma \rightarrow ee, \mu\mu, \tau\tau, WW$)
 - flat fit (~2.7) used to obtain uncertainty (conservative)

rescaling factor =
$$\frac{(ee+sd+dd)_{obs}}{(ee)_{sim}} = \frac{Obs. - Bkg.}{\gamma\gamma \rightarrow \mu\mu, WW}$$

measured rescaling factor consistent with prediction by **SuperChic** generator within uncertainties!

- Measured: SF = 2.359 + 0.0032 × $\frac{m_{\mu\mu}}{\text{GeV}}$
- SuperChic: SF = 2.243 + 0.0026 × $\frac{m_{\mu\mu}}{\text{GeV}}$

applied to all simulation

Beamspot smearing to pileup tracks

- **simulated events** have a *fixed* beamspot *z* position and width for a given era
- **in data**, beamspot *z* position and width are *run-dependent*
- to each simulated event, randomly assign a BS position z_{data}^{BS} & a BS width σ_{data}^{BS} by sampling the BS distributions in data
- correct *z* position of the pileup tracks

- smear:
$$z^{\text{corr}} = z_{\text{MC}}^{\text{BS}} + \frac{\sigma_{\text{MC}}^{\text{BS}}}{\sigma_{\text{data}}^{\text{BS}}} (z - z_{\text{MC}}^{\text{BS}})$$

- shift:
$$z^{\text{corr}} = z + (z_{\text{data}}^{\text{BS}} - z_{\text{MC}}^{\text{BS}})$$

BACKGROUND ESTIMATION

CMS-SMP-23-005

Backgrounds to $\gamma\gamma \rightarrow \tau\tau$ search

- MC simulation
 - Drell–Yan $(\mathbb{Z}/\gamma^* \rightarrow \ell \ell)$: dominant at low mass
 - exclusive $\gamma\gamma \rightarrow$ ee, $\mu\mu$, WW production
 - inclusive WW production (small)
- data-driven: misidentified hadronic jets
 - $-j \rightarrow \tau_h$: $e\tau_h$, $\mu \tau_h$ & $\tau_h \tau_h$ channels
 - $-j \rightarrow e/\mu$: $e\mu$ channels

$j \rightarrow \tau_h$ mis-ID background estimation

- background from j → τ_h mis-IDs mostly include
 QCD multijet and W + jets events
- estimated in a data-driven way
- measure "mis-ID rate" (MF) in several CRs

 $\mathsf{MF} = \frac{N(j \to \tau_h \text{ passes tight } \tau_h \text{ ID requirement})}{N(j \to \tau_h \text{ fails tight, but passes looser } \tau_h \text{ ID requirement})}$

• as a function of $\tau_h p_T \& \text{decay mode}$

Tight $\tau_{\rm h}$ ID requirement

• MFs & corrections measured in separate CRs: – W + jets: $m_T > 75$ GeV – QCD: SS, $m_T < 75$ GeV

- fewer tracks lead to more isolated τ_h
 ⇒ higher fake rates
 ⇒ apply corrections as a function of N_{tracks}
- total fake rate " $j \rightarrow \tau_h$ misidentification factors":

$$MF = f_{W}(m_{vis}, m_{T}) \times MF_{W}(p_{T}^{\tau_{h}}, DM^{\tau_{h}}) \times corr_{W}(N_{tracks}, DM^{\tau_{h}})$$
$$+ \left(1 - f_{W}(m_{vis}, m_{T})\right) \times MF_{QCD}(p_{T}^{\tau_{h}}, DM^{\tau_{h}}) \times corr_{QCD}(N_{tracks}, DM^{\tau_{h}})$$

jet is 4 times more likely to pass the tight τ_h ID criteria if there is no other track at the vertex

CMS-SMP-23-005

Systematics

Uncertainty	Process	Magnitude
Luminosity	All simulations	1.6%
DY cross section	DY	2%
Inclusive diboson cross section	WW, WZ, ZZ	5%
e ID, iso, trigger	All simulations	up to 2%
e ID low-N _{tracks} correction	All simulations	1%
μ ID, iso, trigger	All simulations	<2%
$ au_{\rm h}$ ID	All simulations	1–5%
$ au_{ m h}$ trigger	All simulations	up to 5%
$ m e ightarrow au_h$ mis-ID	$Z/\gamma * \rightarrow ee and \gamma \gamma \rightarrow ee$	<10%
$\mu \to \tau_h \operatorname{ID}$	$Z/\gamma * \rightarrow \mu\mu$ and $\gamma\gamma \rightarrow \mu\mu$	<10%
$\tau_{\rm h}$ energy scale	All simulations	<1.2%
$e \rightarrow \tau_h$ energy scale	$Z/\gamma * \rightarrow ee and \gamma \gamma \rightarrow ee$	<5%
$\mu \rightarrow \tau_{\rm h}$ energy scale	$Z/\gamma * \rightarrow \mu\mu$ and $\gamma\gamma \rightarrow \mu\mu$	<1%
$\tau_{\rm h}$ ID low- $N_{ m tracks}$ correction	All simulations	2.1%
e ID low- N_{tracks} correction	All simulations	2.0%
$ m e ightarrow au_h$ ID low- $N_{ m tracks}$ correction	$Z/\gamma * \rightarrow ee and \gamma \gamma \rightarrow ee$	22%
$\mu \rightarrow \tau_{\rm h} \operatorname{ID} \operatorname{low-} N_{ m tracks}$ correction	$Z/\gamma * \rightarrow \mu\mu$ and $\gamma\gamma \rightarrow \mu\mu$	15%
N ^{PU} _{tracks} reweighting	All simulations	2%
$N_{\rm tracks}^{\rm HS}$ reweighting	DY and inclusive VV	1.5-6.5%
Acoplanarity correction	DY	5%
DY extrapolation from $N_{\text{tracks}} < 10$	DY simulation	1.4–2.0%
μ_R, μ_f	DY simulation	Shape
PDF	DY simulation	Shape
jet $\rightarrow \tau_{\rm h}$ MF, extrapolation with $p_{\rm T}^{\tau_{\rm h}}$	jet $\rightarrow \tau_{\rm h}$ mis-ID bkg.	<50%
jet $\rightarrow \tau_{\rm h}$ MF, $N_{\rm tracks}$ extrapolation (stat.)	$jet \rightarrow \tau_h$ mis-ID bkg.	6–18%
jet $\rightarrow \tau_{\rm h}$ MF, inversion of CR selection	$jet \rightarrow \tau_h$ mis-ID bkg.	<10%
jet $\rightarrow \tau_{\rm h}^{\rm n}$ MF, $x^{\rm QCD}$ fraction	$jet \rightarrow \tau_h$ mis-ID bkg.	9%
jet $\rightarrow \tau_{\rm h}^{\rm n}$ MF, $N_{\rm tracks}$ extrapolation (syst.)	$jet \rightarrow \tau_h$ mis-ID bkg.	<10%
$jet \rightarrow e/\mu$ OS-to-SS (stat.)	jet $\rightarrow e/\mu$ mis-ID bkg.	<20%
jet \rightarrow e/ μ OS-to-SS (syst.)	jet \rightarrow e / μ mis-ID bkg.	10%
jet \rightarrow e / μ OS-to-SS N_{tracks} extrapolation	jet \rightarrow e / μ mis-ID bkg.	8%
Elastic rescaling (stat.)	$\gamma\gamma \rightarrow \tau\tau/\mu\mu/\text{ee}, WW$	1.3-3.7%
Elastic rescaling (syst., shape)	$\gamma\gamma ightarrow au au / \mu\mu / ee, WW$	Mass-dependent
Limited statistics	All processes	Bin-dependent
Pileup reweighting	All simulations	Event-dependent

57

Leading systematics

rescaling of elastic simulation ($\gamma\gamma \rightarrow \ell\ell$, WW)

- use linear fit to estimate uncertainty
- dominant systematic

 $N_{\text{tracks}}^{\text{HS}}$ correction in Drell–Yan — (~6.5% in $N_{\text{tracks}} = 0$)

 N_{tracks} extrapolation to $j \rightarrow \tau_{\text{h}}$ mis-ID rate (up to ~20%)

NLL breakdown by stat. & syst.

Form factors vs. EFTs

Figure 7: Total cross-section change as a function of anomalous magnetic moment and as a function of electric dipole moment.

DELPHI (2004) arXiv:hep-ex/0406010

Madgraph5 v3.52 $\gamma\gamma \rightarrow \tau\tau$

10

FIG. 1. Elementary cross section for $\gamma \gamma \rightarrow \tau^+ \tau^-$ process as a function of $W_{\gamma\gamma} = m_{\tau\tau}$ (left) and as a function of $z = \cos \theta$ for $W_{\gamma\gamma} = 15$ GeV (right).

Dynal et al. (2020) arXiv:2002.05503

13 TeV

 $M_{\tau\tau}^{4 \times 10^2} \frac{5 \times 10^2}{M_{\tau\tau}}$

— δa_r=+0.006; (σ=0.92pb)

3×10²

— SMγγ→ττ (σ=0.90pb) — δa_r=-0.006; (σ=0.90pb)

2×10²

0.1

a_τ

μ1T-SR

μe-SR

μ3T-SR

Combined

 a_{τ} comparisons

arXiv:1908.05180

INTERPRETATION

CMS-SMP-23-005

Signal simulation

- elastic-elastic events are generated using gammaUPC generator with k_t smearing (arXiv:2207.03012)
- charged form factors to correct the photon flux are used (recommended by gammaUPC authors)
- $a_{\tau} \& d_{\tau}$ interpretation using the **EFT approach** with the <u>SMEFTsim</u> package, simplifying with $C_{\tau W} = 0$:

$$\delta a_{\tau} \propto \frac{\operatorname{Re}[C_{\tau B}]}{\Lambda^2}, \qquad \delta d_{\tau} \propto \frac{\operatorname{Im}[C_{\tau B}]}{\Lambda^2}$$

• scan $a_{\tau} \& d_{\tau}$ values through matrix element reweighting in two *independent* 1D grids of 100 points for $C_{\tau B}$:

 $\operatorname{Re}[C_{\tau B}] \in [-40, 40], \quad \operatorname{Im}[C_{\tau B}] \in [-40, 40]$

- varying a_{τ} or d_{τ} changes the cross section and $m_{\tau\tau}$ distribution
- hadronized using Pythia 8.24, switching off multi-parton interaction
- result *independent* of choice of Λ , because $C_{\tau B}$ and $C_{\tau W}$ scale with Λ^2 , but we fix $\Lambda = 2$ TeV in event generation

Form factors vs. EFTs

in the **SM Lagrangian** electromagnetic moments arise from:

$$\mathcal{L} \supset \mathcal{L}_{\tau\tau\gamma} = \frac{1}{2} \bar{\tau} \sigma^{\mu\nu} \left(a_{\tau} \frac{e}{2m_{\tau}} - id_{\tau}\gamma_5 \right) \tau_R F_{\mu\nu}$$

 previous analyses (<u>DELPHI</u>, <u>ATLAS</u>, <u>CMS</u>), used form factors to parametrize the γττ vertex:

$$\Gamma_{\mu}(q^2) = ie \left[F_1(q^2) \gamma_{\mu} + \frac{1}{2m_{\tau}} (iF_2(q^2) + F_3(q^2)\gamma_5) \sigma_{\mu\nu} q^{\nu} \right]$$

- $F_1(q^2)$ parametrises the vector part of the electromagnetic current and is identified at zero-momentum transfer ($q^2 = 0$) with the electric charge e, implying $F_1(0) = 1$
- the asymptotic values of the form factors (q² → 0) are the electromagnetic moments a_τ and d_τ:

$$a_{\tau} = \frac{F_2(0)}{e}$$
$$d_{\tau} = \frac{e}{2m_{\tau}}F_3(0)$$

- the virtualities of exchanged photons in $\gamma\gamma \rightarrow \ell\ell$:
 - PbPb UPC : $Q_{1,2}^2 \lesssim 0.001 \, \text{GeV}^2$
 - pp: $Q_{1,2}^2 \lesssim 0.08 \text{ GeV}^2$
 - LEP e^+e^- : $Q_{1,2}^2 < 1 \text{ GeV}^2$

 we use SMEFT model to parametrize deviations a_τ and d_τ from the SM can be parametrized in terms of a BSM Lagrangian with dim-6 operators with NP scale Λ:

$$\mathcal{L}_{\rm BSM} = \bar{L}_{\tau} \sigma^{\mu\nu} \tau_R H \left[\frac{\mathcal{C}_{\tau B}}{\Lambda^2} B_{\mu\nu} + \frac{\mathcal{C}_{\tau W}}{\Lambda^2} W_{\mu\nu} \right]$$

• after symmetry breaking, using $C_{\tau\gamma} = \cos \theta_W C_{\tau B} - \sin \theta_W C_{\tau W}$:

$$\mathcal{L}_{\rm BSM} \supset \mathcal{L}_{\tau\tau\gamma}^{\rm BSM} = \bar{\tau}_L \sigma^{\mu\nu} \tau_R \frac{\nu}{\sqrt{2}\Lambda^2} C_{\tau\gamma} F_{\mu\nu}$$

• $\gamma \tau \tau$ vertex:

$$\Gamma_{\mu}(q^{2}) = ie\gamma_{\mu} - \frac{\sqrt{2}\nu}{\Lambda^{2}} \Big[\operatorname{Re} \big[\mathcal{C}_{\tau\gamma} \big] + i\gamma_{5} \operatorname{Im} \big[\mathcal{C}_{\tau\gamma} \big] \Big] \sigma_{\mu\nu} q^{\nu}$$

• then $\delta a_{\tau} \& \delta d_{\tau}$ are linearly dependent through the *complex* Wilson coefficients:

$$\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}\nu}{\Lambda^2} \operatorname{Re}[C_{\tau\gamma}]$$
$$\delta d_{\tau} = \frac{\sqrt{2}\nu}{\Lambda^2} \operatorname{Im}[C_{\tau\gamma}]$$

see Dynal et al. [arXiv:2002.05503], gammaUPC [arXiv:2207.03012], Haisch et al. [arXiv:2307.14133]

spin tensor $\sigma_{\mu\nu} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}]$

Fiducial cross section definition

similar to ATLAS <u>STDM-2019-19</u> & CMS <u>HIN-21-009</u> analyses

- measured $\gamma\gamma \rightarrow \tau\tau$ fiducial cross section $\sigma_{\rm obs}^{\rm fid} = 12.4^{+3.8}_{-3.1}$ fb
- fiducial cross section definition (using gen-level quantities and dressed leptons):

	eμ	$e\tau_h$	$\mu \tau_{\rm h}$	$\tau_{\rm h} \tau_{\rm h}$
$p_{\rm T}^{\rm e}$ (GeV)	> 15/24	> 25	—	—
$ \eta^{\mathrm{e}} $	< 2.5	< 2.5		
$p_{\rm T}^{\mu}$ (GeV)	> 24/15		> 21	
$ \eta^{\mu} $	< 2.4		< 2.4	
$p_{\rm T}^{\tau_{\rm h}}$ (GeV)	_	> 30	> 30	> 40
$ \eta^{ au_{ ext{h}}} $		< 2.3	< 2.3	< 2.3
$\Delta R(\ell,\ell')$	> 0.5	> 0.5	> 0.5	> 0.5
$m_{\rm T}({\rm e}/\mu, \vec{p}_{\rm T}^{\rm miss})$ [GeV]	_	< 75	< 75	
A	< 0.015	< 0.015	< 0.015	< 0.015
$m_{\rm vis}$ (GeV)	< 500	< 500	< 500	< 500
N _{tracks}	0	0	0	0

ELECTRON & MUON G – 2

Measurement of lepton g – 2

electron

- stable
- Penning traps
- Δa_e @ 0.13 ppt !
- agrees with SM 1 ppt

<u>muon</u>

- lifetime $\sim 2.2 \times 10^{-6}$ s
- cyclotrons
- Δa_µ @ 0.20 ppm !
- tension with theory ?

<u>tau</u>

- lifetime $\sim 2.9 \times 10^{-13}$ s
- $\gamma\gamma \rightarrow \tau\tau$ process in colliders !
- limit by LEP ~20 times
 Schwinger term
- many BSMs predict
 enhancement
 ⇒ probe for NP ?

Measurement of electron g – 2 in Penning traps

- oscillate electron in nonuniform E field, but uniform B field
- measure resonance ۲ frequencies

Measurement of muon g – 2 in cyclotrons

- muon lifetime ~ 2.2 μ s \Rightarrow use cyclotrons
- spin precesses faster than momentum in cyclotron magnetic field:

Larmor precession $\omega_{\rm S}$ > cyclotron oscillation $\omega_{\rm C}$

$$\omega_{\rm a} = \omega_{\rm S} - \omega_{\rm C}$$

$$= \frac{g-2}{2} \frac{e}{m_{\mu}} B$$

$$\sim 230 \,\mathrm{kHz}$$

• measure oscillation in $\mu^+ \rightarrow e^+$ energy spectrum

spin –

100

momentu

Quick history: Muon g – 2

- CERN:
 - **1961**: ~0.2%
 - **1979**: ~7.30 ppm
- BNL:
 - **1999**: ~1.30 ppm
 - 2001: ~0.54 ppm
 - \Rightarrow discrepancy with **theory** !
- FNAL:
 - 2021: ~0.46 ppm
 - **2023**: ~0.20 ppm
 - \Rightarrow still tension

