Charged-particle production in pp collisions at 13.6 TeV and Pb-Pb collisions at 5.36 TeV with ALICE

Abhi Modak* (University of Brescia) On behalf of the ALICE Collaboration *abhi.modak@cern.ch

Finanziato dall'Unione europea NextGenerationEU

Motivation and outline

Charged-particle pseudorapidity density $(dN_{ch}/d\eta)$

- Fundamental observable
- Sensitive to collision energy, collision centrality and initial energy density

Charged-particle pseudorapidity density $(dN_{ch}/d\eta)$

Motivation and outline

- Fundamental observable
- Sensitive to collision energy, collision centrality and initial energy density
- Understand particle production mechanisms

Hard QCD processes
Large p_T Described by pQCD

Soft QCD processes \square Low p_{T}

Need effective theories and statistical models

Motivation and outline

Charged-particle pseudorapidity density $(dN_{ch}/d\eta)$

- Fundamental observable
- Sensitive to collision energy, collision centrality and initial energy density
- Understand particle production mechanisms
- Good input for constraining theoretical models

Hard QCD processes

Large *p*_T
Described by pQCD

Soft QCD processes \Box Low p_{T}

Need effective theories and statistical models

Motivation and outline

Charged-particle pseudorapidity density $(dN_{ch}/d\eta)$

- Fundamental observable
- Sensitive to collision energy, collision centrality and initial energy density
- Understand particle production mechanisms
- * Good input for constraining theoretical models

ALICE Run 3 results presented here \checkmark pp collisions @ $\sqrt{s} = 13.6 \text{ TeV}$ \checkmark Pb-Pb collisions @ $\sqrt{s_{NN}} = 5.36 \text{ TeV}$ Hard QCD processes
Large p_T Described by pQCD

Soft QCD processes \Box Low p_{T}

Need effective theories and statistical models

Laula

New Inner Tracking System See Jian Liu's talk

- New Si inner tracker
- ✤ 3 inner layers 0.36% X0 each
- Closer to beam
- ✤ 50 kHz continuous readout
- ♦ |η| < 1.3</p>

Beam pipe

New Inner Tracking System See Jian Liu's talk

- ✤ New Si inner tracker
- ✤ 3 inner layers 0.36% X0 each
- Closer to beam
- ✤ 50 kHz continuous readout
- * $|\eta| < 1.3$

Time Projection Chamber

- ✤ 4 layers of GEM
- ✤ 50 kHz continuous
- readout
- * $|\eta| < 0.9$

Beam pipe

New Inner Tracking System See

tem See <u>Jian Liu's talk</u>

- New Si inner tracker
- ✤ 3 inner layers 0.36% X0 each
- Closer to beam
- ✤ 50 kHz continuous readout
- ♦ |η| < 1.3</p>

Time Projection Chamber

- ✤ 4 layers of GEM
- ✤ 50 kHz continuous
- readout
- $\bullet |\eta| < 0.9$

Fast Interaction Trigger

FIT

- See <u>Yury Melikyan's talk</u>
 - Centrality, event plane
 - ✤ Luminosity
 - Interaction time
 - ★ FT0A (3.5 < η < 4.9)
 - **♦** FT0C (-3.3 < η < -2.1)

Abhi Modak - ICHEP 2024

Estimation of centrality/multiplicity class

Centrality classification

- Pb-Pb: Performing NBD-Glauber fit to measured FT0C amplitude
- pp: Multiplicity classes are determined by the signal sum of FT0A and FT0C

Proton-proton collisions

Minimum-bias $dN_{ch}/d\eta$ in pp

Minimum-bias $dN_{ch}/d\eta$ in pp

- ★ INEL>0: Inelastic events having at least one N_{ch} in $|\eta| < 1$
- ✤ PYTHIA 8 describes the MB results well

18/07/24

Minimum-bias $dN_{ch}/d\eta$ in pp

* INEL>0: Inelastic events having at least one N_{ch} in $|\eta| < 1$

ALICE (pp) INEL ISR (pp) INEL UA5 (pp) INEL

PHOBOS (pp) INEL

 10^{4}

PYTHIA 8 describes the MB results well

13.6 TeV

18/07/24

Abhi Modak - ICHEP 2024

Multiplicity dependent $dN_{ch}/d\eta$ in pp

NEW

* Factor ~7 increase in $dN_{ch}/d\eta$ at 0-1% relative to 70-100%

 Good input for various particle production models

12

Lead-lead collisions

$dN_{ch}/d\eta$ distributions in Pb-Pb

NEW

* Good agreement with ALICE and CMS measurements

$dN_{ch}/d\eta$ distributions: comparison with 5.02 TeV

* We observe larger values of $dN_{ch}/d\eta$ for 5.36 TeV compared to 5.02 TeV

5.36 TeV	Most Central	Most peripheral
5.02 TeV	1.03 ± 0.04	1.18 ± 0.12

$dN_{ch}/d\eta$ distributions: comparison with model

PYTHIA/Angantyr

Consider extrapolation of pp dynamics to describe nuclear collisions

J. High Energ. Phys. (2018) 2018: 134

HYDJET++

NEW

Full evolution of heavy-ion collisions (jet interaction, QGP, hadronic phase)

J. Phys.: Conf. Ser. 736 012024

ALI-PREL-571341

Non-QGP-based model (Angantyr) describes the data better than QGP-based model (HYDJET)

Centrality dependence of $\langle dN_{ch}/d\eta \rangle$

NEW

 Centrality evolution at 5.36 TeV is similar to earlier measurements

Centrality dependence of $\langle dN_{ch}/d\eta \rangle$

Initial-state models

IP-Glasma[1]: primarily designed to describe the initial state around mid-rapidity in 2+1D hydro simulations.

McDIPPER[2]: low x, 3+1D hydro simulations

 Initial-state models describe the data better than the event generator HYDJET++

[1] <u>PRL108, 252301 (2012)</u>
[2] <u>Phys.Rev.C 109 (2024) 4, 044916</u>

Energy dependence of \langle dN_{ch}/d\eta \rangle

Pb-Pb, $\sqrt{s_{\text{NN}}} = 5.36 \text{ TeV}$

- * New result consistent with the trend established from previous heavy-ion measurements
- * $dN_{ch}/d\eta$ increases faster in Pb-Pb $(\propto s^{0.156(3)})$ than pp $(\propto s^{0.115(3)})$

ALI-PREL-571650

 $dN_{ch}/d\eta$ measured in pp at 13.6 TeV and Pb-Pb at 5.36 TeV using Run 3 data Showing good performance of new ALICE experimental setup

dN_{ch}/dη measured in pp at 13.6 TeV and Pb-Pb at 5.36 TeV using Run 3 data ☑ Showing good performance of new ALICE experimental setup *** pp**

ALICE provided a first insight to multiplicity-dependent $dN_{ch}/d\eta$

Inew constraints on particle production models

 $dN_{ch}/d\eta$ measured in pp at 13.6 TeV and Pb-Pb at 5.36 TeV using Run 3 data

☑ Showing good performance of new ALICE experimental setup

*pp

ALICE provided a first insight to multiplicity-dependent $dN_{ch}/d\eta$ \square new constraints on particle production models

*Pb-Pb

 $\square dN_{ch}/d\eta$: 3% (18%) higher in central (peripheral) Pb-Pb events at 5.36 TeV than in 5.02 TeV \square Factor of ~1.7 increase in $dN_{ch}/d\eta$ from peripheral to central events \square Saturation-based models better reproduce the Pb-Pb measurements

 $dN_{ch}/d\eta$ measured in pp at 13.6 TeV and Pb-Pb at 5.36 TeV using Run 3 data

☑ Showing good performance of new ALICE experimental setup

*pp

ALICE provided a first insight to multiplicity-dependent $dN_{ch}/d\eta$ ight mean constraints on particle production models

* Pb-Pb

 $\square dN_{ch}/d\eta$: 3% (18%) higher in central (peripheral) Pb-Pb events at 5.36 TeV than in 5.02 TeV \square Factor of ~1.7 increase in $dN_{ch}/d\eta$ from peripheral to central events \square Saturation-based models better reproduce the Pb-Pb measurements

Thanks for your kind attention

15 / 15