Study of jet energy redistribution and broadening via hadron-jet correlations with ALICE

Central China Normal University

42nd International Conference on High Energy Physics

Yaxian MAO for the ALICE Collaboration

18-24 July · 2024 · Prague · Czech Republic

Probing QGP with jets

Vacuum fragmentation (e.g. pp collisions)

Collimated sprays of hadrons resulting from fragmentation and subsequent hadronization of "high-energy" partons (quarks&gluons)

Yaxian MAO Central China Normal University

Probing QGP with jets

Vacuum fragmentation (e.g. pp collisions)

Collimated sprays of hadrons resulting from fragmentation and subsequent hadronization of "high-energy" partons (quarks&gluons)

Yaxian MAO **Central China Normal University**

In-medium fragmentation (e.g. Pb-Pb collisions)

Quenching \rightarrow partons lose energy through medium-induced gluon radiation and collisions with medium constituents

Jet quenching: an opportunity to study QGP

- Study structure of QGP by understanding jet modification from medium interactions (quenching)
- Several types of jet observables
 - Jet yields and constituents \rightarrow jet suppression and energy redistribution
 - Jet fragmentation and substructure \rightarrow modification of parton showers
 - Angular correlation \rightarrow jet deflection

Study of different effects in a complementary way must yield consistent picture

Jet quenching: an opportunity to study QGP

- Study structure of QGP by understanding jet modification from medium interactions (quenching)
- Several types of jet observables
 - Jet yields and constituents \rightarrow jet suppression and energy redistribution
 - Jet fragmentation and substructure \rightarrow modification of parton showers
 - Angular correlation \rightarrow jet deflection

Study of different effects in a complementary way must yield consistent picture

Charged-particle jet measurements in ALICE

Run 2 data: pp and 0 -10% Pb-Pb samples at $\sqrt{S_{\rm NN}} = 5.02 \,{\rm TeV}$

Yaxian MAO **Central China Normal University**

Charged-particle&jet reconstruction

- a. ITS SPD (Pixel) b. ITS SDD (Drift) c. ITS SSD (Strip) V0 and T0 e. FMD
- **ITS** (Inner Tracking System)
 - $|\eta| < 0.9, \ 0 < \varphi < 2\pi$
 - Primary vertex reconstruction
 - Charged particle tracking
- **TPC** (Time Projection Chamber)
 - $|\eta| < 0.9, \ 0 < \varphi < 2\pi$
 - Charged particle tracking
 - Particle identification
- **V0** (V0C + V0A)
 - $-3.7 < \eta < -1.7, 2.8 < \eta < 5.1$
 - Event trigger
 - Event multiplicity, centrality determination

Jet suppression and energy redistribution

- Jet and high $p_{\rm T}$ hadron suppression observed over extensive range
 - Interplay between high $p_{\rm T}$ hadron and jet results
- New ML-based techniques allow for the extension to lower jet $p_{\rm T}$ and large R = 0.6

Hadron-jet correlations

- Measurements of semi-inclusive jets recoiling from a high $p_{\rm T}$ hadron provide a good handle on combinatorial background by varying the trigger track intervals
 - access to low $p_{\rm T}$ jet quenching and intra-jet broadening
- Angle ($\Delta \varphi$) of the recoil jet relative to trigger track axis provides additional insights into QGP properties
 - In vacuum: transverse broadening due to gluon emissions (Sudakov broadening)^{1. L Chen, Phys. Lett. B 763 (2016)} 3. JHEP 01 (2019) 172
 - ➡ In medium: additional broadening due to scatterings with medium constituents^[1,2]
 - Transverse broadening due to multiple soft scatterings in the QGP
 - Related to transport coefficient $\hat{q} \sim \langle k_{\perp}^2 \rangle / L \sim \langle \Delta \varphi^2 \rangle / L$
 - Large-angle deflection ($\Delta \varphi < \pi$) of hard partons off of quasi-particle^[3]?

Hadron-jet correlations

- Measurements of semi-inclusive jets recoiling from a high $p_{\rm T}$ hadron provide a good handle on combinatorial background by varying the trigger track intervals
 - access to low $p_{\rm T}$ jet quenching and intra-jet broadening
- Angle ($\Delta \varphi$) of the recoil jet relative to trigger track axis provides additional insights into QGP properties
 - In vacuum: transverse broadening due to gluon emissions (Sudakov broadening)^{1. L Chen, Phys. Lett. B 763 (2016)} 3. JHEP 01 (2019) 172
 - ➡ In medium: additional broadening due to scatterings with medium constituents^[1,2]
 - Transverse broadening due to multiple soft scatterings in the QGP
 - Related to transport coefficient $\hat{q} \sim \langle k_{\perp}^2 \rangle / L \sim \langle \Delta \varphi^2 \rangle / L$
 - Large-angle deflection ($\Delta \varphi < \pi$) of hard partons off of quasi-particle^[3]?

Hadron-jet correlations

- Measurements of semi-inclusive jets recoiling from a high $p_{\rm T}$ hadron provide a good handle on combinatorial background by varying the trigger track intervals
 - access to low $p_{\rm T}$ jet quenching and intra-jet broadening
- Angle ($\Delta \varphi$) of the recoil jet relative to trigger track axis provides additional insights into QGP properties
 - ➡ In vacuum: transverse broadening due to gluon emissions (Sudakov broadening)[1,2]
 - In medium: additional broadening due to scatterings with medium constituents[1,2]
 - Transverse broadening due to multiple soft scatterings in the QGP $\stackrel{\scriptstyle \checkmark}{\stackrel{\scriptstyle }{\stackrel{\scriptstyle }{ }}$
 - Related to transport coefficient $\hat{q} \sim \langle k_{\perp}^2 \rangle / L \sim \langle \Delta \varphi^2 \rangle / L$
 - Large-angle deflection ($\Delta \varphi < \pi$) of hard partons off of quasi-particle^[3]?

 p_1

Medium response to propagating parton

- Jet loses energy due to interactions with medium
 - medium modified by jets

- Insert out-of-equilibrium probe see how medium responds
 - ➡ transport coefficients, equation of state

Semi-inclusive jets recoiling from trigger track

$$TT_{sig:} 20 < p_{T,trig} < 50 \text{ GeV/c}$$

$$TT_{ref:} 5 < p_{T,trig} < 7 \text{ GeV/c}$$

$$\Delta_{recoil} = \frac{1}{N_{trig}^{AA}} \frac{d^3 N_{jet}^{AA}}{dp_{T,jet}^{ch} d\Delta \varphi d\eta_{jet}} \bigg|_{p_{T,trig} \in TT_{Sig}} - c_{Ref} \cdot \frac{1}{N_{trig}^{AA}} \frac{d^3 N_{jet}^{AA}}{dp_{T,jet}^{ch} d\Delta \varphi d\eta_{jet}} \bigg|_{p_{T,trig} \in TT_{Sig}}$$

Semi-inclusive jet energy redistribution

 $\Delta_{\text{recoil}} (p_{\text{T}})_{\text{AA}}$ $I_{AA} \equiv$ $\Delta_{\text{recoil}} (p_{\text{T}})_{\text{pt}}$

First measurements of semi-inclusive recoil jet yields down to very low $p_{\rm T}$ (7 GeV/c) with ALICE

Semi-inclusive jet energy redistribution

 $\Delta_{\text{recoil}} (p_{\text{T}})_{\text{AA}}$ $I_{\rm AA} \equiv$ $\Delta_{\rm recoil} (p_{\rm T})_{\rm r}$

- First measurements of semi-inclusive recoil jet yields down to very low $p_{\rm T}$ (7 GeV/c) with ALICE
- Jet yield enhancement at low $p_T \rightarrow$ hint of energy recovery in low $p_{\rm T}$ jets?
- Jet yield suppression at $20 < p_{T,iet} < 60 \text{ GeV}/c \rightarrow \text{Jet}$ energy loss
 - Rising trend with increasing jet $p_T \rightarrow$ Interplay of jet quenching and jet production

Semi-inclusive jet energy redistribution: model comparison

 $A_{\rm recoil} (p_{\rm T})_{\rm AA}$ $I_{\rm AA} \equiv$ $\Delta_{\rm recoil} (p_{\rm T})_{\rm pr}$

First measurements of semi-inclusive recoil jet yields down to very low $p_{\rm T}$ (7 GeV/c) with ALICE

JETSCAPE with Pb-Pb tune: 1903.07706, Phys.Rev.C 107 (2023) 3 Multi-stage energy loss MATTER+LBT

JEWEL:

arXiv:1311.0048, https://jewel.hepforge.org/

Includes collisional and radiative parton energy loss mechanisms in a pQCD approach. medium response effects via treatment of 'recoils'

Hybrid Model: JHEP 02 (2022) 175, JHEP01 (2019) 172

With/without elastic energy loss (i.e 'Moliere' scattering) medium response via with and without wake.

pQCD@LO + Sudakov broadening:

Phys.Lett.B 773 (2017) 672

Leading order pQCD, azimuthal broadening via jet transport coefficient

Semi-inclusive jet energy redistribution: model comparison

$$I_{AA} \equiv \frac{\Delta_{\text{recoil}} (p_{\text{T}})_{AA}}{\Delta_{\text{recoil}} (p_{\text{T}})_{\text{pp}}}$$

- First measurements of semi-inclusive recoil jet yields down to very low $p_{\rm T}$ (7 GeV/c) with ALICE
- The rising trend is qualitatively described by all predications
- Hybrid model and JEWEL predictions overestimate the suppression at high $p_{\rm T}$
- Hybrid model with wake effect and JEWEL with recoils on capture the yield enhancement at low $p_{\rm T}$
 - → Medium response could be responsible for enhancement

Semi-inclusive jet angular distributions

- Get the recoil $p_{\rm T}$ vs $\Delta \varphi$ 2-dimensional distributions for two trigger track $p_{\rm T}$ intervals $\Delta \phi$ distributions measured for the two TT classes using 2D projections

Semi-inclusive jet angular distributions

Yaxian MAO Central China Normal University

Semi-inclusive jet angular distributions

Yaxian MAO Central China Normal University

Recoil jet azimuthal modifications: model comparison

Yaxian MAO Central China Normal University

JETSCAPE with Matter+LBT tune: 1903.07706, Phys.Rev.C 107 (2023) 3 Multi-stage energy loss MATTER+LBT

JEWEL:

arXiv:1311.0048, https://jewel.hepforge.org/

Includes collisional and radiative parton energy loss mechanisms in a pQCD approach. medium response effects via treatment of 'recoils'

Hybrid Model: JHEP 02 (2022) 175, JHEP01(2019)172

With/without elastic energy loss (i.e 'Moliere' scattering) medium response via with and without wake.

pQCD@LO + Sudakov broadening: Phys.Lett.B 773 (2017) 672

Leading order pQCD, azimuthal broadening via jet transport coefficient

Recoil jet azimuthal modifications: model comparison

Yaxian MAO Central China Normal University

- All predictions can reasonably describe the data trend
- JEWEL with recoils-on describes the I_{AA} in all p_T bins, including the broadening effect
- Hybrid model captures the yield enhancement at low pT (sl0), but no broadening effect predicted even including elastic and wake component

Recoil jet azimuthal modifications: different *R*

- - Characteristic of medium response

Yaxian MAO **Central China Normal University**

Transition to broadening from R = 0.2 to R = 0.4 for $10 < p_{T,chjet} < 20$ GeV/c

Recoil jet azimuthal modifications: model comparison

• All features of distribution **reproduced by JEWEL** with recoils on ...

Recoil jet azimuthal modifications: model comparison

All features of distribution reproduced by JEWEL with recoils on ...

 \rightarrow Observed broadening consistent with medium response rather than Molière scattering

Recoil jets vs. inclusive jets modification

• JEWEL with recoil on can describe I_{AA} but not R_{AA}

observables

Yaxian MAO **Central China Normal University**

...but no model incorporating medium response describe all measured

Summary and outlook

- at low- $p_{\rm T}$ with ALICE
 - → Medium response is favored instead of Molière scattering as the cause for both effects

First observation of recoil jet yield enhancement and medium-induced acoplanarity broadening

 $\Delta \phi$ (rad)

Summary and outlook

- at low- $p_{\rm T}$ with ALICE
- \rightarrow Medium response is favored instead of Molière scattering as the cause for both effects

• Full interpretation requires description within a consistent theoretical framework! Future global analyses with multiple observables \rightarrow stay tuned!

響欠

• First observation of recoil jet yield enhancement and medium-induced acoplanarity broadening

ICHEP2024, Prague, 19/07/2024

Backup