

RESULTS AND PROSPECTS ON AN EFT INTERPRETATION OF THE TWZ PROCESS

<u>Alberto Belvedere</u>, Christoph Englert, Roman Kogler, Panagiotis Stylianou, and Michael Spannowsky

> ICHEP Prague 20 July 2024

Alberto Belvedere

- CMS has recently <u>published</u> the first evidence for the TWZ process.
- Very challenging process:
 - Small predicted cross-section ($\sigma_{tWZ} = 127$ fb).
 - ► Large irreducible background (TTZ process):

- CMS has recently <u>published</u> the first evidence for the TWZ process.
- Very challenging process:
 - Small predicted cross-section ($\sigma_{tWZ} = 127$ fb).
 - Large irreducible background (TTZ process):

 New physics could arise from bW→tZ vertices leading to energy growth in specific kinematic distribution.

- TWZ process.
- Very challenging process:

- The TWZ process allows the analysis of SMEFT operators only loosely constrained.

- TWZ process.
- Very challenging process:

- The TWZ process allows the analysis of SMEFT operators only loosely constrained.

SMEFT PREDICTION GENERATION

$$\mathcal{L} = \frac{1}{\Lambda^0} \mathcal{L}_{SM}^{(d=4)} + \frac{1}{\Lambda} \mathcal{L}_{SM}^{(d=4)}$$

- SMEFT prediction generated using MadGraph5 (v2.6.5) and the SMEFT@NLO model (v1.0.3).
- Focus on the \mathcal{O}_{tZ} and the $\mathcal{O}_{\phi Q}^{(3)}$ operators.
- Normalisation scale set to 1 TeV.
- Reweighting used to generate enough EFT points to perform a fit to the data where the **Wilson coefficients** are free parameters.

SMEFT PREDICTIONS

Comparison between SM distributions and SMEFT distributions obtained through reweighting.

TWZ

Alberto Belvedere

TTZ (13 TeV) -SM -O_{tG} $-O_{\phi t} -O_{tZ}$ $-O_{\phi Q}^{(3)} -O_{tW}$ 300 400 500 600 700 Z p, [GeV]

- Excess for the $\mathcal{O}_{\phi Q}^{(3)}$ operator present only for the TWZ process.
- The \mathcal{O}_{tZ} operator shows energy growth for both TWZ and TTZ.
- TWZ is more sensitive than TTZ to most of the operators.

r

RE-INTERPRETATION OF CMS MEASUREMENT

CMS measurement

- Three and four-lepton final states.
- DNN to separate between TWZ and TTZ in 3ℓ and N_{b-jets} in 4ℓ .

CMS, <u>arXiv:2312.11668</u>

EFT interpretation

- Simulation of TTZ and TWZ processes $(\sigma_{ttZ} = 787 \text{ fb}, \sigma_{tWZ} = 127 \text{ fb}).$
- Estimate event yields using realistic assumptions for acceptances and lepton efficiencies.
- Background yields from CMS measurement.
- Uncertainties:
 - 15% on TTZ and TWZ
 - 10% on VV
 - 30% on non-prompt leptons
 - 11% on other backgrounds

EVENT YIELDS AND EXPECTED SIGNAL STRENGTHS

3ℓ	48
781 803 ± 120	114 101 ± 1
105.7 108 ± 16	16 13 ± 2
504 ± 50	22 ± 2
309 ± 93	1 ± 0.3
485 ± 53	24 ± 3
2312	180
	3ℓ 781 803 ± 120 105.7 108 ± 16 504 ± 50 309 ± 93 485 ± 53 2312

• Efficiencies to separate between TWZ and TTZ:

- SR: $\varepsilon_{tWZ} = 0.5$, $\varepsilon_{ttZ} = 0.25$
- CR: $1 \varepsilon_{tWZ}$ and $1 \varepsilon_{ttZ}$

EVENT YIELDS AND EXPECTED SIGNAL STRENGTHS

3ℓ	48
781 803 ± 120	114 101 ± 1
105.7 108 ± 16	16 13 ± 2
504 ± 50	22 ± 2
309 ± 93	1 ± 0.3
485 ± 53	24 ± 3
2312	180
	3ℓ 781 803 ± 120 105.7 108 ± 16 504 ± 50 309 ± 93 485 ± 53 2312

• Efficiencies to separate between TWZ and TTZ:

- SR: $\varepsilon_{tWZ} = 0.5$, $\varepsilon_{ttZ} = 0.25$
- CR: $1 \varepsilon_{tWZ}$ and $1 \varepsilon_{ttZ}$

OBSERVED AND EXPECTED LIMITS

Alberto Belvedere

Expected signal strengths

- 68% CL
- 95% CL
- 99% CL
- Observed signal strengths
- 68% CL
- ---- 95% CL
- ----- 99% CL

Best fit values: $\mu_{tWZ} = 3$, $\mu_{ttZ} = 0.92$ CMS values: $\mu_{tWZ} = 3.4$, $\mu_{ttZ} = 0.87$

Observed μ_{tWZ} is 2σ higher than SM.

SMEFT LIMITS FROM CMS TWZ

Alberto Belvedere

Bounds on the \mathcal{O}_{tZ} and the $\mathcal{O}_{\phi Q}^{(3)}$ operators compatible with SM.

Result on \mathcal{O}_{tZ} can improve global fits, where this measurement is one of the more powerful ones.

Sensitivity on $\mathcal{O}_{\phi Q}^{(3)}$ not great yet. Future improvements will make TWZ more powerful to constrain this operator.

Consider SM values for sensitivity estimates.
Extrapolate measurement to HL-LHC luminosities.

Alberto Belvedere

Integ	grated luminosity [fb ⁻¹]		
	138		
	300	Improvement in c_{tZ} marginal for 3000 fb ⁻¹	
	600		
	1000		
	2000		
	3000	Some improvement for $c_{\phi Q}^{(3)}$ but	
		less than factor of two. $$	

→ Systematically limited!

- Improve systematics gradually to have 1/2 the size of uncertainties at 3000 fb⁻¹
- Assume improved analysis methods resulting into a better signal background separation:

 $\begin{aligned} \epsilon_{tWZ} &= 0.65\\ \epsilon_{ttZ} &= 0.18\\ \epsilon_{bkg} &= 0.5 \end{aligned}$

 $c_{\phi Q}^{(3)}$

- Improve systematics gradually to have 1/2 the size of uncertainties at 3000 fb⁻¹
- Assume improved analysis methods resulting into a better signal background separation:
 - $\epsilon_{tWZ} = 0.65$
 - $\varepsilon_{ttZ} = 0.18$
 - $\varepsilon_{bkg} = 0.5$

→ Substantially better constraints

Alberto Belvedere

Ultimately, use the anomalous energy growth of SMEFT operators.

→ Differential measurements

CONCLUSIONS

- individual unfolding of TWZ [J. Keaveney, PhysRevD.107.036021].

The TWZ process is a very promising process for probing EFT operators that modify the top-electroweak SM interaction.

The recent CMS measurement has been leveraged to derive **limits on the** Wilson coefficient of the \mathcal{O}_{tZ} and $\mathcal{O}_{dO}^{(3)}$ operators and to explore possible future analysis strategies to enhance the sensitivity to these operators.

• A differential measurement in Z p_T significantly enhances the sensitivity to possible EFT effects.

• Overlap between TWZ and TTZ: simultaneous measurement is much more powerful than the

BACKUP SLIDES

Alberto Belvedere

18

OPERATIVE DEFINITION OF THE TWZ PROCESS

The cancellation of the overlap between tWZ and $t\bar{t}Z$ can be done in two ways:

- Diagram subtraction (DS): locally gauge-invariant subtraction term.
- Diagram removal (**DR**): resonant diagrams directly removed from computation.

$$|\mathcal{M}_{tWZ}|^2 = |\mathcal{M}_{tWZ}^{non-res}|^2 +$$

$$|\mathcal{M}_{tWZ}|^2_{DR1} \equiv |\mathcal{M}^{non-res}_{tWZ}|^2$$

The DR1 scheme is applied using the **MadSTR** tool.

 $|\mathcal{M}_{tWZ}|^2_{DB2} \equiv |\mathcal{M}^{non-res}_{tWZ}|^2 + 2\mathcal{R}(\mathcal{M}^{res}_{tWZ}\mathcal{M}^{non-res}_{tWZ})|^2$

