Direct-photon production in heavy ion collisions at RHIC

Axel Drees, ICHEP 2024, July 2024, Prague, Czech Republic

- Introduction
- Direct Photon Production in Au+Au at 200 GeV
 - Direct photon spectra
 - Direct photon flow
- Dilepton continuum in p+p at 200 GeV
- Summary/Outlook

Electromagnetic Radiation in A+A Collisions:

Photon Measurements with PHENIX

Direct Photons in p+p and Au+Au at \sqrt{s_{NN}} = 200 GeV

System Size and Energy Dependence of Spectral Shape

*

System Size and Energy Dependence of Direct Photon Yield

With no obvious dependence on p_T

Stony Brook University

Azimuthal Anisotropy of Direct Photon Production

- **Fireball from collision rapidly expands**
 - **Radial flow with anisotropy with respect to** ٩ the reaction plane (elliptic flow)
 - **Direct photons emitted from collectively** expanding matter
 - **Anisotropic Doppler shift** ٩

Direct Photon Azimuthal Anisotropy

- Significant anisotropy for p_T < 5 Gev/c
 - Similar to hadrons ۲
 - Maximum around 2-3 GeV/c ۵
 - **Clear centrality dependence** ۲
- High p_T dominated by prompt photon emission
 - v₂ consistent with zero ۲
 - No centrality dependence ۲

Thermal Photon Model Calculations

C. Gales et. al. Phys. Rev. C 105 014909 (2022)

Virtual Photon (e⁺e⁻ Pair) Continuum Measurement in PHENIX

Requires high statistics and simultaneous measurement of open heavy flavor pairs

PHENIX 2014 + 2016 datasets

15 nb⁻¹ or 34B Au+Au events

Schematic Dilepton Spectrum

Direct Measurement of the Temperature

- Thermal virtual photons: mass and momentum
 - Momentum Doppler shifted
 - Mass Lorentz invariant
 - Mass directly measures time averaged temperature
- Mass range 1 3 GeV
 - Only significant physics background open heavy flavor

Proof of Principle: p+p Collisions with Vertex Tracker (VTX)

Separating Prompt and Heavy Flavor Signal

- Transverse Distance of Closest Approach
 - Require 2+ hits PIXEL and STRP PIXEL layer of VTX
 - Momentum measurement from DC/PC1 tracking
 - Constant magnetic field

Separating Prompt and Heavy Flavor Signal

Summary: PHENIX Direct Photon Results

- New high statistics Au+Au results reveal universal features
- Large "thermal" yield for p_T < 4 GeV
 - T_{eff} increases with p_T
 - No obvious variation of T_{eff} with $\sqrt{s_{NN}}$ or centrality
 - $N_{\gamma}^{dir} \sim (N_{ch})^{\alpha}$ scaling of direct photon yields in all A+A systems
 - $\alpha = 1.1$ independent of p_T
 - Large anisotropy v₂ with max at 2-3 GeV
- Prompt photon production dominates p_T > 5 GeV
 - No modification of yield beyond N_{coll} scaling of p+p
 - No anisotropy
- Outlook: measure T through e⁺e⁻ pair continuum in Au+Au
 - Proof of principle in p+p
 - Separation between prompt and HF components possible

