

NLO QCD predictions for off-shell ttW production in association with a light jet at LHC

JHEP 09 (2023) 026

Huan-Yu Bi, Manfred Kraus, **Minos Reinartz**, and Malgorzata Worek

ICHEP 2024, 18.07.2024, Prague

Collaborative Research Center TRR 257

Gefördert durch

Motivation

- Rare process at LHC
- Background process to $t\bar{t}H$ and $t\bar{t}t\bar{t}$
- Irreducible background to same-sign dilepton searches
- Charge asymmetries are larger than $t\bar{t}$

 $\mathbf{A}_{C}^{\Delta|y|} = \frac{\sigma\left(\Delta|y| > 0\right) - \sigma\left(\Delta|y| < 0\right)}{\sigma\left(\Delta|y| > 0\right) + \sigma\left(\Delta|y| < 0\right)}, \quad \Delta|y| = |y_t| - |y_{\overline{t}}|$

- Leading order only includes $q\bar{q'}$ initial states
- $g\bar{q}$ channels open up at NLO and gg at NNLO

gg can be accessed in NLO $t\bar{t}Wj$ calculation

Report of the Topical Group on Top quark physics and heavy flavor production for Snowmass 2021

Experimental status

ATLAS+CMS Pro	eliminary		vs = 13 TeV, November 2023
σ _{ftw} = 0.75 ± 0.05(scale) ± arXiv:2306.16311 NNLO(QCD)+NLO(EW	0.01(PDF) pb σ _{dz} = 0.86 ^{±0.07} _{-0.08} (scale) ± 0.02(PDF) pb EPJC 80 (2020) 428 NLO(QCD+EW)+NNLL	σ _{fty+tWy} × 20 = 0.038 ^{+0.001} _{-0.002} (tot.) pb × 20 JHEP 10 (2018) 158 NLO QCD	$eq:started_st$
tī₩	$\sigma_{meas.} \pm (stat.) \pm (syst.)$ 0.89 ± 0.05 ± 0.07 pb 0.87 ± 0.04 ± 0.05 pb	►	total stat. ATLAS, L _{int} = 140 fb ⁻¹ ATLAS-CONF-2023-019* CMS, L _{int} = 138.0 fb ⁻¹ JHEP 07 (2023) 219
tīZ	$0.86 \pm 0.04 \pm 0.04$ pb $0.95 \pm 0.05 \pm 0.06$ pb		ATLAS, L _{int} = 140 fb ⁻¹ ATLAS-CONF-2023-065* CMS, L _{int} = 77.5 fb ⁻¹ JHEP 03 (2020) 056
t τ γ+tWγ eμ	$0.0396 \pm 0.0008 \ ^{+ 0.0026}_{- 0.0022} pb \times 20$		ATLAS, L _{int} = 139 fb ⁻¹ , Vis 1
$tar{t}\gamma$ dilepton	$0.175 \pm 0.003 \pm 0.006 \ pb \times 5$		CMS, L _{int} = 138 fb ⁻¹ , Vis 2
t ī γ I+jets	0.798 ± 0.007 ± 0.048 pb		CMS, L _{int} = 137 fb ⁻¹ , Vis 3 JHEP 12 (2021) 180 *oreliminary
0 0.2	0.4 0.6	0.8 σ _{ttx} [pb]	1 1.2 1.4

LHC Top Working Group '23

Experimental status

ATLAS Collaboration '24

Theory status

- NLO QCD + EW / Complete NLO for stable tops
 Frixione, Hirschi, Pagani, Shao, Zaro '15 /*Frederix, Pagani, Zaro* '17
- Stable tops matched to parton shower Cordero, Kraus, Reina '21
- NLO QCD with off-shell effects Bevilacqua, Bi, Hartanto, Kraus, Worek '20 / Denner, Pelliccioli '20
- NLO QCD and EW corrections with subleading contributions with off-shell effects

Ansgar Denner, Giovanni Pelliccioli '21 / Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '21

- FxFx jet merging up to two jets with EW corrections and subleading contributions *Frederix*, *Tsinikos '21*
- ttWj at NLO QCD with off-shell effects *Bi, Kraus, Reinartz, Worek '23*
- Approximate NNLO QCD + NLO EW
 Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, Savoini '23
- MECs to top quark decays Frederix, Gellersen, Nasufi '24

• Soft-gluon resummation

Kulesza, Motyka, Schwartländer, Stebel, '18 '20 / Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos '19

Theory status

- NLO QCD + EW / Complete NLO for stable tops
 Frixione, Hirschi, Pagani, Shao, Zaro '15 / Frederix, Pagani, Zaro '17
- Stable tops matched to parton shower Cordero, Kraus, Reina '21
- NLO QCD with off-shell effects Bevilacqua, Bi, Hartanto, Kraus, Worek '20 / Denner, Pelliccioli '20
- NLO QCD and EW corrections with subleading contributions with off-shell effects

Ansgar Denner, Giovanni Pelliccioli '21 / Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '21

- FxFx jet merging up to two jets with EW corrections and subleading contributions *Frederix, Tsinikos '21*
- ttWj at NLO QCD with off-shell effects *Bi, Kraus, Reinartz, Worek '23*
- Approximate NNLO QCD + NLO EW
 Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, Savoini '23
- MECs to top quark decays Frederix, Gellersen, Nasufi '24

• Soft-gluon resummation

Kulesza, Motyka, Schwartländer, Stebel, '18 '20 / Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos '19

Setup of the calculation

$$pp \to e^+ \nu_e \,\mu^- \bar{\nu}_\mu \,\tau^+ \nu_\tau \,b\bar{b} \,j + X$$

Bi, Kraus, Reinartz, Worek '23

Diagrams created with FeynGame Harlander, Klein, Lipp '20

Full off-shell calculation = DR + SR + NR + interference + Breit-Wigner propagators

Setup of the calculation

- LHC with $\sqrt{s} = 13 \,\mathrm{TeV}$
- Diagonal CKM matrix
- 5 flavour scheme
- Top-width is a fixed parameter throughout the calculation $\Gamma_{t, \text{ off-shell}}^{\text{NLO}} = 1.33254 \text{ GeV}$
- anti- k_T jet algorithm with R = 0.4 Cacciari, Salam, Soyez '08
- charge-aware b-jet recombination scheme with exactly 2 b-jets

$$bg o b$$
, $\overline{b}g o \overline{b}$, $b\overline{b} o g$, $bb o b$, $\overline{b}\overline{b} o \overline{b}$

• Inclusive event selection

• 3 scale choices:
$$\mu_0 = \mu_R = \mu_F = \frac{H_T}{2},$$
 $H_T = p_T(e^+) + p_T(\tau^+) + p_T(\mu^-) + p_T^{miss} + p_T(b_1) + p_T(b_2) + p_T(j_1)$
 $\mu_0 = \mu_R = \mu_F = \frac{E_T}{2},$ $E_T = \sqrt{m_t^2 + p_T^2(t)} + \sqrt{m_t^2 + p_T^2(\bar{t})} + \sqrt{m_W^2 + p_T^2(W)} + p_T(j_1)$
 $\mu_0 = \mu_R = \mu_F = m_t + \frac{m_W}{2}$ $\mathcal{Q} = |M(t) - m_t| + |M(\bar{t}) - m_t| + |M(W) - m_W|$

 PDF sets: NNPDF3.1 NNPDF Collaboration '17, CT18 CTEQ-TEA collaboration '19, MSHT20 Bailey, Cridge, Harland-Lang, Martin, Thorne '20

Computational framework

- Results are stored in modified Les Houches Event Files Alwall et al '06 and ROOT Ntuples Bern et al. '13
- HEPlot for reweighting of scales, PDFs and change to more exclusive cuts

Bevilacqua (unpublished)

Fiducial cross-sections

PDF	$\mid \mu_0$	$\sigma^{LO}\left[\mathrm{ab}\right]$	δ_{scale}	σ^{NLO} [ab]	δ_{scale}	δ_{PDF}	${\cal K}$
NNPDF3.1	$\begin{vmatrix} H_T/2\\ E_T/2\\ m_t + m_W/2 \end{vmatrix}$	$115.8 \\ 103.8 \\ 141.0$	+38% -26% +37% -25% +41% -27%	$142.3 \\ 139.7 \\ 144.3$	$^{+1.4\%}_{-8.1\%}_{+3.7\%}_{-9.9\%}_{+0.3\%}_{-14.1\%}$	+1.2% -1.2% +1.2% -1.2% +1.2% -1.2%	$1.23 \\ 1.35 \\ 1.02$

Bi, Kraus, Reinartz, Worek '23

- LO results have about 40% scale uncertainty
- NLO results have 10% scale uncertainty and 1.2% internal PDF uncertainties
- NLO results for different scale choices differ by up to 3%
- LO cross-sections differ by about 36%
- Differences in K-factor driven by LO result

Fiducial cross-section: Uncertainties

Bi, Kraus, Reinartz, Worek '23

Stability

Results could depend on large logarithms introduced from cuts

- We study dependence on cuts for $p_T(j_1)$, $p_T(b)$ and p_T^{miss}
- Uncertainties keep similar relative size
- Size of K-factors changes slightly
 ⇒ driven by LO predictions

Results under great theoretical control!

PDF	$p_T(j)$	$\sigma^{\rm LO}~[{\rm ab}]$	$\delta_{ m scale}$	$\sigma^{\rm NLO}$ [ab]	$\delta_{ m scale}$	$\delta_{ m PDF}$	\mathcal{K}
NNPDF	25	115.8	$+43.8 (38\%) \\ -29.8 (26\%)$	142.3	+ 2.1 (1.4%) -11.5 (8.1%)	$+1.8 (1.2\%) \\ -1.8 (1.2\%)$	1.23
	30	103.4	$+39.4 (38\%) \\ -26.7 (26\%)$	130.8	+ 2.1 (1.6%) -11.5 (8.8%)	$+1.6\ (1.2\%)\ -1.6\ (1.2\%)$	1.27
	35	93.5	$+35.8 (38\%) \\ -24.3 (26\%)$	121.2	+ 2.1 (1.7%) -11.4 (9.4%)	$+1.4 (1.1\%) \\ -1.4 (1.1\%)$	1.30
	40	85.4	$+32.9 (38\%) \\ -22.2 (26\%)$	112.9	+ 2.7 (2.4%) -11.1 (9.8%)	$+1.3 (1.1\%) \\ -1.3 (1.1\%)$	1.32
CT	25	133.1	+54.8 (41%) -36.2 (27%)	140.7	+ 2.0 (1.4%) -11.4 (8.1%)	$+2.7 (1.9\%) \\ -2.6 (1.8\%)$	1.06
	30	119.2	$+49.3 (41\%) \\ -32.6 (27\%)$	129.4	+ 2.0 (1.6%) -11.4 (8.8%)	$^{+2.5}_{-2.3}$ (1.9%)	1.08
	35	108.2	$+45.0 (42\%) \\ -29.7 (27\%)$	119.9	+ 2.1 (1.7%) -11.2 (9.4%)	$^{+2.3}_{-2.1}$ (1.9%)	1.11
	40	99.1	$+41.4 (42\%) \\ -27.3 (28\%)$	111.7	+ 2.8 (2.5%) -11.0 (9.8%)	$^{+2.1}_{-1.9}$ (1.9%)	1.13
MSHT	25	124.5	+51.7 (42%) -34.1 (27%)	142.0	+ 2.0 (1.4%) -11.4 (8.0%)	+2.1 (1.5%) -2.1 (1.5%)	1.14
	30	111.4	+46.6 (42%) -30.7 (28%)	130.6	+ 2.0 (1.6%) -11.4 (8.7%)	$^{+1.9}_{-1.9}$ $(1.5\%)_{-1.9}$ (1.4%)	1.17
	35	101.0	$+42.5 (42\%) \\ -27.9 (28\%)$	121.0	+ 2.1 (1.7%) -11.2 (9.3%)	+1.7 (1.4%) -1.7 (1.4%)	1.20
	40	92.5	$+39.1 (42\%) \\ -25.7 (28\%)$	112.8	+ 2.6 (2.3%) -11.0 (9.7%)	$^{+1.6}_{-1.5}$ (1.4%)	1.22

Bi, Kraus, Reinartz, Worek '23

Differential distributions

- 80% correction in tail outside of uncertainty
- Scale uncertainties are reduced from 40% at LO to below 18% at NLO
- Shows importance of NLO corrections for ttWj
- Similar observations for H_T

- Constant differential K-factor at about 20%
- Uncertainty reduced by factor 4 to 10%

Differential PDF uncertainties

- Small difference due to PDF set choice about 2%
- Internal PDF uncertainties go up to 4% level in the tail for CT18 and 2% for NNPDF3.1
- Both are negligible compared to NLO scale uncertainties at 18%

Bi, Kraus, Reinartz, Worek '23

Additional jet activity in ttW

	$\sigma_{H_T/3}^{t\bar{t}W^+}$ [ab]	$\sigma_{H_T/2}^{t\bar{t}W^+j}$ [ab]	$\sigma^{t\bar{t}W^+}_{E_T/3}$ [ab]	$\sigma_{E_T/2}^{t\bar{t}W^+j}$ [ab]	$\sigma^{t\bar{t}W^+}_{m_t+m_W/2}\left[\mathrm{ab}\right]$	$\sigma_{m_t+m_W/2}^{t\bar{t}W^+j} [\mathrm{ab}]$
LO	$216.6^{+24\%}_{-18\%}$	$115.8^{+38\%}_{-26\%}$	$198.7^{+23\%}_{-18\%}$	$103.9^{+37\%}_{-25\%}$	$202.6^{+24\%}_{-18\%}$	$141.0^{+41\%}_{-27\%}$
NLO	$254.6^{+2.8\%}_{-5.9\%}$	$142.3^{+1.4\%}_{-8.1\%}$	$249.6^{+4.6\%}_{-6.8\%}$	$139.7^{+3.7\%}_{-9.9\%}$	$252.3^{+4.5\%}_{-6.8\%}$	$144.3^{+\ 0.3\%}_{-14.1\%}$

Bi, Kraus, Reinartz, Worek '23

- ttWj contribution to inclusive NLO ttW sample is 50% 70% depending on scale choice and perturbative order
- Additional jet activity needs to be understood already at the integrated level for the ttW process
- NNLO corrections or merged samples should be used instead of NLO ttW

Additional jet activity in ttW

- Differences up to 42% in tails well outside the uncertainty bands
- Uncertainties go up 25% for ttW and 14% for ttWj

Bi, Kraus, Reinartz, Worek '23

- Up to 30% difference in tail
- Uncertainties for both processes similar at 6% 8%

Additional jet activity in ttW

- Difference is up to 24%
- Overall shape distortion up to 36%
- Uncertainty goes up from 2% -5 % in the beginning and up to 8% - 13% in the tail

Bi, Kraus, Reinartz, Worek '23

- ttW slightly prefers back-to-back emission of b_1 and b_2
- Shape distortion up to 20% with uncertainties covering 4% - 7%

Summary

- NLO corrections small on integrated fiducial cross-section level
- Up to 80% NLO corrections in specific phase-space regions
- PDF uncertainties are negligible compared to scale uncertainties
- Contribution of ttWj to ttW is about 50% 70%
- Large shape distortion due to additional jet on differential level

Outlook

- Improve our off-shell ttW predictions by merging ttW + ttWj at NLO
- Compare different approaches like exclusive sums and MiNLO merging

Thank you for your attention!

Backup: Cuts and input parameters

• Cuts

- $\begin{array}{ll} p_T(\ell) > 25 \; {\rm GeV} \;, & |y(\ell)| < 2.5 \;, \\ p_T(j_b) > 25 \; {\rm GeV} \;, & |y(j_b)| < 2.5 \;, \\ p_T(j) > 25 \; {\rm GeV} \;, & |y(j)| < 2.5 \;, \\ \Delta R_{\ell\ell} > 0.4 \;, & \Delta R_{b\ell} > 0.4 \;, \\ \Delta R_{j\ell} > 0.4 \;, & \Delta R_{bj} > 0.4 \;, \\ \Delta R_{bb} > 0.4 \;, & \Delta R_{jj} > 0.4 \;, \end{array}$
- Input parameters

 $G_{\mu} = 1.166378 \cdot 10^{-5} \,\text{GeV}^{-2} \,,$ $m_W = 80.379 \,\text{GeV} \,,$ Γ $m_Z = 91.1876 \,\text{GeV} \,,$ Γ

$$\Gamma_{t, \text{ off-shell}}^{\text{LO}} = 1.45766 \,\text{GeV}\,,$$

$$\begin{split} m_t &= 172.5 \, \text{GeV} \,, \\ \Gamma_W^{\text{NLO}} &= 2.0972 \, \text{GeV} \,, \\ \Gamma_Z^{\text{NLO}} &= 2.5074 \, \text{GeV} \,. \end{split}$$

 $\Gamma_{t,\,\mathrm{off}\text{-shell}}^{\mathrm{NLO}} = 1.33254\,\mathrm{GeV}$

21

Backup: Resummation

Backup: Subprocesses

Leading order:

• 12 subprocesses with 1868 Feynman diagrams each

$$\begin{split} u\bar{d} \ / \ \bar{d}u &\to e^+\nu_e \ \mu^-\bar{\nu}_\mu \ \tau^+\nu_\tau \ b\bar{b} \ g \ , & c\bar{s} \ / \ \bar{s}c \to e^+\nu_e \ \mu^-\bar{\nu}_\mu \ \tau^+\nu_\tau \ b\bar{b} \ g \ , \\ gu \ / \ ug \to e^+\nu_e \ \mu^-\bar{\nu}_\mu \ \tau^+\nu_\tau \ b\bar{b} \ d \ , & g\bar{d} \ / \ \bar{d}g \to e^+\nu_e \ \mu^-\bar{\nu}_\mu \ \tau^+\nu_\tau \ b\bar{b} \ \bar{u} \ , \\ gc \ / \ cg \to e^+\nu_e \ \mu^-\bar{\nu}_\mu \ \tau^+\nu_\tau \ b\bar{b} \ \bar{s} \ , & g\bar{s} \ / \ \bar{s}g \to e^+\nu_e \ \mu^-\bar{\nu}_\mu \ \tau^+\nu_\tau \ b\bar{b} \ \bar{c} \ , \end{split}$$

Backup: Subprocesses for real emission

Bi, Kraus, Reinartz, Worek '23				
Partonic	Number Of	Number Of	Number Of	
SUBPROCESS	Feynman Diagrams	CS DIPOLES	NS SUBTRACTIONS	
$gg \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b \bar{b} q q'$	16662	36	9	
$qq' \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b \bar{b} gg$	16662	40	10	
$qg \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b \bar{b} q' g$	16662	36	9	
$qq' \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} qq'$	6240	12	3	
$q\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} qq'$	6240	8	2	
$qq' \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} b\bar{b}$	6240	16	4	
$qq' \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} QQ'$	3120	8	2	
$q\bar{q} \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} QQ'$	3120	4	1	
$qQ' \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} qQ'$	3120	8	2	
$b\bar{b} \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} qq'$	6240	12	3	
$bq \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} bQ'$	6240	16	4	
$bq \to e^+ \nu_e \mu^- \bar{\nu}_\mu \tau^+ \nu_\tau b\bar{b} bq'$	6240	16	4	

Backup: Stability

		10		NI O -					PDF	$p_T^{\text{miss}} \left[\text{GeV} \right]$	$\sigma^{\rm LO}$ [ab]	$\delta_{\rm scale}$	$\sigma^{\rm NLO} [\rm ab]$	$\delta_{\rm scale}$	$\delta_{\rm PDF}$	\mathcal{K}
PDF	$p_T(b)$	$\sigma^{\rm LO}$ [ab]	$\delta_{ m scale}$	σ^{NLO} [ab]	$\delta_{ m scale}$	$\delta_{ m PDF}$	\mathcal{K}	-	NNDDE	0	115.0	+43.8 (38%)	149.2	+ 2.1 (1.4%)	+1.8(1.2%)	1.92
NNPDF	25	115.8	$^{+43.8}_{-29.8} (38\%)$	142.3	+ 2.1 (1.4%) -11.5 (8.1%)	+1.8 (1.2%) -1.8 (1.2%)	1.23		NNPDF	10	110.8	-29.8 (26%) +43.4 (38%)	142.5	-11.5 (8.1%) + 2.0 (1.4%)	-1.8(1.2%) +1.7(1.2\%)	1.20
	30	106 1	+40.2 (38%)	120.8	+ 1.9 (1.4%)	+1.6 (1.2%)	1 99			10	114.0	-29.5 (26%)	140.9	-11.4 (8.1%)	-1.7 (1.2%)	1.20
	50	100.1	-27.3 (26%)	129.8	-10.4 (8.0%)	-1.6 (1.2%)	1.22			20	111.2	+42.1 (38%) -28.6 (26%)	137.1	+ 2.0 (1.5%) -11.2 (8.2%)	$^{+1.7}_{-1.7}$ (1.2%)	1.23
	35	96.1	+36.4 (38%) -24.7 (26%)	117.3	+ 1.7 (1.4%) - 9.4 (8.0%)	+1.4 (1.2%) -1.4 (1.2%)	1.22			30	105.9	$^{+40.1}_{-27.2} (38\%)$	131.0	$^{+1.9}_{-10.8}$ (1.5%)	$^{+1.6}_{-1.6}$ (1.2%)	1.24
	40	86.1	$+32.7 (38\%) \\ -22.2 (26\%)$	105.0	+ 1.5 (1.5%) - 8.4 (8.0%)	+1.3 (1.2%) -1.3 (1.2%)	1.22			40	99.0	$^{+37.5}_{-25.5} (38\%)$	122.8	$^{+1.9}_{-10.3}$ (1.5%) $^{-10.3}$ (8.4%)	$^{+1.5}_{-1.5} (1.2\%)$	1.24
CT	25	133.1	$+54.8 (41\%) \\ -36.2 (27\%)$	140.7	+ 2.0 (1.4%) -11.4 (8.1%)	+2.7 (1.9%) -2.6 (1.8%)	1.06	_	\mathbf{CT}	0	133.1	$^{+54.8}_{-36.2}$ (41%) $^{-36.2}$ (27%)	140.7	+ 2.0 (1.4%) -11.4 (8.1%)	$^{+2.7}_{-2.6}$ (1.9%) $^{-2.6}$ (1.8%)	1.06
	30	122.0	+50.2 (41%) -33.2 (27%)	128.3	+ 1.8 (1.4%) -10.3 (8.0%)	+2.5 (1.9%) -2.3 (1.8%)	1.05			10	131.7	$^{+54.2}_{-35.8}$ (41%)	139.3	+ 2.0 (1.4%) -11.3 (8.1%)	$^{+2.7}_{-2.5}$ (1.9%) $^{-2.5}$ (1.8%)	1.06
	25	110 4	+45.5 (41%)	115.0	+ 1.6 (1.4%)	+2.2 (1.0%)	1.05			20	127.8	+52.6 (41%) -34.8 (27%)	135.5	+ 1.9 (1.4%) -11.1 (8.2%)	+2.6 (1.9%) -2.5 (1.8%)	1.06
	30	110.4	-30.1 (27%)	115.9	- 9.3 (8.0%)	-2.1 (1.8%)	1.05			30	121.7	+50.1 (41%) -33.1 (27%)	129.4	+ 1.9 (1.5%) -10.7 (8.3%)	+2.5 (1.9%) -2.4 (1.8%)	1.06
	40	99.0	$+40.8 (41\%) \\ -27.0 (27\%)$	103.8	+ 1.5 (1.4%) - 8.3 (8.0%)	+2.0 (1.9%) -1.9 (1.8%)	1.05			40	113.8	+46.9 (41%)	121.4	+ 1.8 (1.5%)	+2.4 (1.9%) +2.2 (1.9%)	1.07
MSHT	25	124.5	+51.7 (42%) -34.1 (27%)	142.0	+ 2.0 (1.4%) -11.4 (8.0%)	+2.1 (1.5%) -2.1 (1.5%)	1.14	-	MSHT	0	124.5	-31.0(27%) +51.7(42%)	142.0	+ 2.0 (1.4%)	+2.1 (1.5%)	1.14
	00	1110	+47.4(42%)	100.0	+ 1.8 (1.4%)	+1.9(1.5%)				U	121.0	-34.1 (27%)	11210	-11.4 (8.0%)	-2.1 (1.5%)	
	30	114.0	-31.2 (27%)	129.6	-10.3 (7.9%)	-1.9 (1.5%)	1.14			10	123.2	+31.2 (42%) -33.7 (27%)	140.6	+2.0(1.4%) -11.3(8.0%)	+2.1 (1.5%) -2.1 (1.5%)	1.14
	35	103.2	+42.9 (42%) -28.3 (27%)	117.0	+ 1.6 (1.4%) - 9.3 (7.9%)	+1.8 (1.5%) -1.7 (1.5%)	1.13			20	119.5	$^{+49.7~(42\%)}_{-32.7~(27\%)}$	136.8	$^{+1.9}_{-11.0}$ (1.4%) -11.0 (8.1%)	$^{+2.1}_{-2.0} (1.5\%)$	1.14
	40	92.5	$+38.5 (42\%) \\ -25.4 (27\%)$	104.9	+ 1.5 (1.4%) - 8.3 (7.9%)	+1.6 (1.5%) -1.6 (1.5%)	1.13			30	113.8	$^{+47.3}_{-31.2}$ (42%)	130.7	$^{+1.9}_{-10.7}$ (1.4%) $^{-10.7}$ (8.2%)	$^{+2.0}_{-1.9}$ (1.5%)	1.15
			(=:///)		(11070)	(11070)				40	106.3	+44.2 (42%) -29.1 (27%)	122.6	+ 1.8 (1.5%) -10.2 (8.3%)	$+1.8 (1.5\%) \\ -1.8 (1.5\%)$	1.15

Backup: Dependence on scales

Bi, Kraus, Reinartz, Worek '23

Backup: Exclusive samples for ttW

(μ_R,μ_F)	$\sigma_{H_T/2}^{t\bar{t}W^+}(N_j=0) \; [ab]$	$\sigma_{H_T/2}^{t\bar{t}W^+}(N_j = 1) \; [ab]$	$\sigma_{H_T/2}^{t\bar{t}W^+}(N_j \ge 0) \text{ [ab]}$
(μ_0,μ_0)	$104.6^{+20\%}_{-44\%}$	$141.9^{+41\%}_{-27\%}$	$246.4^{+5.0\%}_{-7.0\%}$
(μ_R,μ_F)	$\delta \sigma^{t\bar{t}W^+}_{H_T/2}(N_j=0)$ [ab]	$\delta \sigma^{t\bar{t}W^+}_{H_T/2}(N_j=1)$ [ab]	$\delta \sigma^{t\bar{t}W^+}_{H_T/2}(N_j \ge 0)$ [ab]
$(2\mu_0,2\mu_0)$	+21.1(+20%)	-38.4(-27%)	-17.2(-7.0%)
$(\mu_0/2, \mu_0/2)$	-45.7(-44%)	+58.1(+41%)	+12.4(+5.0%)
$(2\mu_0,\mu_0)$	+19.1(+18%)	-32.3(-23%)	-13.2(-5.3%)
$(\mu_0/2,\mu_0)$	-40.0(-38%)	+46.6(+33%)	+6.6(+2.7%)
$(\mu_0,2\mu_0)$	+4.1(+3.9%)	-7.8(-5.5%)	-3.8(-1.5%)
$(\mu_0,\mu_0/2)$	-3.1(-2.9%)	+8.7(+6.1%)	+5.6(+2.3%)

Backup: Exclusive samples for ttWj

(μ_R,μ_F)	$\sigma_{H_T/2}^{t\bar{t}W^+j}(N_j = 1) \; [ab]$	$\sigma_{H_T/2}^{t\bar{t}W^+j}(N_j=2) \ [ab]$	$\sigma_{H_T/2}^{t\bar{t}W^+j}(N_j \ge 1) \; [ab]$
(μ_0,μ_0)	$78.6^{+13\%}_{-48\%}$	$63.7^{+56\%}_{-34\%}$	$142.3^{+1.4\%}_{-8.1\%}$
(μ_R,μ_F)	$\delta \sigma_{H_T/2}^{t\bar{t}W^+j}(N_j=1)$ [ab]	$\delta \sigma_{H_T/2}^{t\bar{t}W^+j}(N_j=2)$ [ab]	$\delta \sigma_{H_T/2}^{t\bar{t}W^+j}(N_j \ge 1) \text{ [ab]}$
$(2\mu_0, 2\mu_0)$	+9.9(+13%)	-21.4(-34%)	-11.5(-8.1%)
$(\mu_0/2,\mu_0/2)$	-37.4(-48%)	+35.7(+56%)	-1.6(-1.1%)
$(2\mu_0,\mu_0)$	+9.0(+11%)	-18.0(-28%)	-9.0(-6.3%)
$(\mu_0/2,\mu_0)$	-28.7(-37%)	+27.8(+44%)	-0.9(-0.6%)
$(\mu_0,2\mu_0)$	+3.5(+4.5%)	-4.8(-7.5%)	-1.2(-0.8%)
$(\mu_0,\mu_0/2)$	-3.5(-4.5%)	+5.5(+8.6%)	+2.0(+1.4%)

Bi, Kraus, Reinartz, Worek '23