Theoretical results for top-pair and top+W production

Nikolaos Kidonakis

- Higher-order soft-gluon corrections
- $t\bar{t}$ production
- *tW* production
- $t\bar{t}W$ production

ICHEP 2024

Soft-gluon corrections

They are important for top-quark processes and they approximate known exact results at NLO and NNLO very well

partonic processes $a(p_a) + b(p_b) \rightarrow t(p_t) + X$ define $s = (p_a + p_b)^2$, $t = (p_a - p_t)^2$, $u = (p_b - p_t)^2$

For a $2 \rightarrow n$ process with $p_a + p_b \rightarrow p_t + p_2 + \cdots + p_n$ we define the threshold variable $s_4 = s + t + u - m_t^2 - (p_2 + \cdots + p_n)^2$ Also $s_4 = (p_2 + \cdots + p_n + p_g)^2 - (p_2 + \cdots + p_n)^2$ where extra gluon with p_g emitted At partonic threshold $p_g \rightarrow 0$ and thus $s_4 \rightarrow 0$

Soft corrections $\left[\frac{\ln^k(s_4/m_t^2)}{s_4}\right]_+$ with $k \le 2n-1$ for the order α_s^n corrections

Resum these soft corrections for the double-differential cross section

Finite-order expansions \rightarrow no prescription needed or used (this avoids underestimating the size of the corrections)

Approximate NNLO (aNNLO) and/or approximate N^3LO (aN³LO) predictions for cross sections and differential distributions

Soft-gluon Resummation

$$d\sigma_{pp \to tX} = \sum_{a,b} \int dx_a \, dx_b \, \phi_{a/p}(x_a, \mu_F) \, \phi_{b/p}(x_b, \mu_F) \, d\hat{\sigma}_{ab \to tX}(s_4, \mu_F)$$

take Laplace transforms $d\hat{\sigma}_{ab \to tX}(N) = \int (ds_4/s) \ e^{-Ns_4/s} d\hat{\sigma}_{ab \to tX}(s_4)$

and $\tilde{\phi}(N) = \int_0^1 e^{-N(1-x)} \phi(x) dx$ with transform variable N

Then

$$d\tilde{\sigma}_{ab\to tX}(N) = \tilde{\phi}_{a/a}(N_a, \mu_F) \; \tilde{\phi}_{b/b}(N_b, \mu_F) \; d\tilde{\hat{\sigma}}_{ab\to tX}(N, \mu_F)$$

Refactorization for the cross section

$$d\sigma_{ab\to tX}(N) = \tilde{\psi}_a(N_a, \mu_F) \,\tilde{\psi}_b(N_b, \mu_F) \,\tilde{J}(N, \mu_F) \,\mathrm{tr} \left\{ H_{ab\to tX}\left(\alpha_s(\mu_R)\right) \,\tilde{S}_{ab\to tX}\left(\frac{\sqrt{s}}{N\mu_F}\right) \right\}$$

 $\psi_a, \psi_b \rightarrow \text{collinear emission from incoming partons}$ $J \rightarrow \text{collinear emission from final-state gluons or massless quarks (if any)}$ $H_{ab \rightarrow tX}$ is hard function \rightarrow short distance $S_{ab \rightarrow tX}$ is soft function \rightarrow noncollinear soft gluons

Thus

$$d\tilde{\hat{\sigma}}_{ab\to tX}(N) = \frac{\tilde{\psi}_{a/a}(N_a,\mu_F)\,\tilde{\psi}_{b/b}(N_b,\mu_F)}{\tilde{\phi}_{a/a}(N_a,\mu_F)\,\tilde{\phi}_{b/b}(N_b,\mu_F)}\,\tilde{J}(N,\mu_F)\,\operatorname{tr}\left\{H_{ab\to tX}\left(\alpha_s(\mu_R)\right)\,\tilde{S}_{ab\to tX}\left(\frac{\sqrt{s}}{N\mu_F}\right)\right\}$$

 $S_{ab \to tX}$ satisfies the renormalization group equation

$$\left(\mu_R \frac{\partial}{\partial \mu_R} + \beta(g_s) \frac{\partial}{\partial g_s}\right) S_{ab \to tX} = -\Gamma_{S \ ab \to tX}^{\dagger} S_{ab \to tX} - S_{ab \to tX} \Gamma_{S \ ab \to tX}$$

Soft anomalous dimension $\Gamma_{S ab \to tX}$ controls the evolution of the soft function which gives the exponentiation of logarithms of N

Renormalization group evolution \rightarrow resummation

$$d\tilde{\sigma}_{ab \to tX}^{\text{resum}}(N) = \exp\left[\sum_{i=a,b} E_i(N_i)\right] \exp\left[\sum_{i=a,b} 2\int_{\mu_F}^{\sqrt{s}} \frac{d\mu}{\mu} \gamma_{i/i}(N_i)\right] \exp\left[E'(N)\right]$$
$$\times \operatorname{tr}\left\{H_{ab \to tX}\left(\alpha_s(\sqrt{s})\right) \bar{P} \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/N} \frac{d\mu}{\mu} \Gamma_{S \ ab \to tX}^{\dagger}(\alpha_s(\mu))\right] \tilde{S}_{ab \to tX}\left(\alpha_s\left(\frac{\sqrt{s}}{N}\right)\right) P \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/N} \frac{d\mu}{\mu} \Gamma_{S \ ab \to tX}(\alpha_s(\mu))\right]\right\}$$

The soft anomalous dimensions Γ_S and the hard and soft functions are in general matrices in the space of color exchanges in the hard scattering

Top processes studied - total and differential cross sections

Top pair

```
t\bar{t} aN<sup>3</sup>LO (total; top p_T, y, and double-differential; also A_{FB})

t\bar{t} aN<sup>3</sup>LO + EW (total; top p_T, y)

t\bar{t} SMEFT aNNLO (total; top p_T)
```

```
\mathbf{Top-pair} + X
```

```
t\bar{t}\gamma aNNLO + EW (total; top p_T, y)
t\bar{t}W aN<sup>3</sup>LO + EW (total; top p_T, y)
```

Single top

```
t- and s-channel aNNLO (total; top p_T) and aN<sup>3</sup>LO (total)
tW aN<sup>3</sup>LO (total; p_T, y for top and W)
```

Single-top+X

tqH	aNNLO (total; top p_T, y)
$tq\gamma$	aNNLO (total; top p_T, y)
tqZ	aNNLO (total; top y)

Single-top BSM

 $t\gamma, tZ, tZ'$ aNNLO (total; top p_T, y) tg aNNLO (total) tH^- aNNLO (total; top p_T, y) and aN³LO (total)

$t\bar{t}$ production

Soft anomalous dimension matrix is 2×2 for $q\bar{q} \rightarrow t\bar{t}$ channel and 3×3 for $gg \rightarrow t\bar{t}$ channel

I calculated them at one loop in the mid-90's and at two loops fifteen years ago

more recent partial results at three loops

Four-loop massive cusp anomalous dimension from asymptotics [NK, PRD 107, 054006 (2023)] contributes to 4-loop result

NLO expansions agree with exact NLO results very well

NNLO expansions (aNNLO) predicted the exact NNLO results to high accuracy (percent or per mille) for total cross sections and top-quark p_T and rapidity distributions

 $aN^{3}LO$ is the state of the art

electroweak corrections also included

$t\bar{t}$ production at aN³LO QCD + NLO EW at LHC energies (in collaboration with Marco Guzzi and Alberto Tonero)

$tar{t}$ total cross sections at LHC energies with MSHT20 aN 3 LO pdf									
σ in pb	$5.02 { m TeV}$	$7 \mathrm{TeV}$	8 TeV	$13 \mathrm{TeV}$	$13.6 \mathrm{TeV}$	$14 \mathrm{TeV}$			
LO QCD	$40.0^{+14.9+1.1}_{-10.1-1.2}$	$103 + 35 + 3 \\ -24 - 3$	$^{146}_{-34-4}^{+48+3}$	$\substack{469 + 133 + 9 \\ -97 - 10}$	$518 \substack{+145 + 10 \\ -106 - 11}$	$553 + 153 + 11 \\ -113 - 11$			
NLO QCD	58.1 + 6.8 + 1.8 - 7.8 - 2.0	$151 + 17 + 4 \\ -20 - 5$	$215 + 25 + 5 \\ -27 - 6$	$700 + 80 + 15 \\ -80 - 15$	$775 + 89 + 16 \\ -88 - 16$	$828 + 94 + 16 \\ -94 - 18$			
NLO QCD+EW	$58.1^{+6.6+1.8}_{-7.8-2.0}$	$150 {+17} {+4} \\ {-19} {-4}$	${}^{214}_{-26}{}^{+25}_{-6}{}^{+6}_{-6}$	${}^{698}_{-80-16}^{+78+14}_{-80-16}$	$772 {+88 + 16 \\ -87 - 16}$	$\substack{825 + 92 + 16 \\ -93 - 18}$			
NNLO QCD	$\begin{array}{r} 65.3 \\ -4.4 \\ -2.2 \end{array}$	$169^{+7}_{-11}^{+5}_{-5}$	$240^{+9}_{-15}^{+9}_{-7}^{+6}$	$781^{+27}_{-43}^{+16}_{-17}$	$864 \substack{+30 + 18 \\ -47 - 19}$	$922 + 32 + 18 \\ -49 - 20$			
NNLO QCD+EW	${}^{65.3 + 2.8 + 2.0}_{-4.4 - 2.2}$	$168^{+7}_{-11}^{+5}_{-5}$	$\substack{239 + 9 + 6 \\ -15 - 7}$	779^{+27+16}_{-43-17}	$861^{+30}_{-47}^{+18}_{-19}$	$919 + 32 + 18 \\ -49 - 20$			
aN ³ LO QCD	$\begin{array}{r} 68.2 \\ -3.2 \\ -2.3 \end{array}$	$175 + 5 + 5 \\ -7 - 5$	$249^{+7}_{-9}^{+6}_{-7}$	$804 \substack{+22+16 \\ -17-17}$	889^{+24+18}_{-19-20}	$^{948}_{-21}\substack{+26+19\\-21-21}$			
aN ³ LO QCD+EW	$\begin{array}{r} 68.2 \\ -3.2 \\ -2.3 \end{array}$	$174 + 5 + 5 \\ -7 - 5$	$248 + 7 + 6 \\ -9 - 7$	$802^{+22}_{-17}^{+22}_{-17}^{+16}_{-17}$	$886 {+24} {+18} {-19} {-20}$	$_{945}^{+26+19}_{-21-21}$			

aN³LO QCD + NLO EW cross section with scale and pdf uncertainties is with MSHT20 NNLO pdf at 13 TeV: 836^{+23+17}_{-18-11} pb ; at 13.6 TeV: 925^{+25+18}_{-20-12} pb with CT18 NNLO pdf at 13 TeV: 842^{+23+18}_{-18-16} pb ; at 13.6 TeV: 932^{+25+20}_{-20-18} pb with NNPDF4.0 NNLO pdf at 13 TeV: 816^{+23+5}_{-18-4} pb ; at 13.6 TeV: 904^{+25+5}_{-20-5} pb with PDF4LHC21 NNLO pdf at 13 TeV: 837^{+23+20}_{-18-16} pb ; at 13.6 TeV: 926^{+25+22}_{-20-17} pb

Top p_T distributions in $t\bar{t}$ production at 13 TeV

N. Kidonakis, ICHEP 2024, Prague, July 2024

Top rapidity distributions in $t\bar{t}$ production at 13 TeV

N. Kidonakis, ICHEP 2024, Prague, July 2024

tW production

leading-order diagrams

At one loop
$$\Gamma_S^{(1) bg \to tW} = C_F \left[\ln \left(\frac{m_t^2 - t}{m_t \sqrt{s}} \right) - \frac{1}{2} \right] + \frac{C_A}{2} \ln \left(\frac{u - m_t^2}{t - m_t^2} \right)$$

At two loops
$$\Gamma_{S}^{(2) \ bg \to tW} = K_2 \Gamma_{S}^{(1) \ bg \to tW} + \frac{1}{4} C_F C_A (1 - \zeta_3)$$

At three loops

$$\Gamma_S^{(3)\ bg \to tW} = K_3 \,\Gamma_S^{(1)\ bg \to tW} + \frac{1}{2} K_2 C_F C_A (1-\zeta_3) + C_F C_A^2 \left[-\frac{1}{4} + \frac{3}{8} \zeta_2 - \frac{\zeta_3}{8} - \frac{3}{8} \zeta_2 \zeta_3 + \frac{9}{16} \zeta_5 \right]$$

tW production at LHC energies (in collaboration with Nodoka Yamanaka)

The aN³LO cross section for $tW^- + \bar{t}W^+$ with scale and pdf uncertainties is with MSHT20 NNLO pdf at 13 TeV: $79.5^{+1.9+2.0}_{-1.8-1.4}$ pb ; at 13.6 TeV: $87.6^{+2.0+2.1}_{-1.9-1.5}$ pb with MSHT20 aN³LO pdf at 13 TeV: $77.3^{+1.9+2.0}_{-1.8-2.1}$ pb ; at 13.6 TeV: $85.6^{+2.0+2.2}_{-1.9-2.3}$ pb with PDF4LHC21 pdf at 13 TeV: $79.3^{+1.9+2.2}_{-1.8-2.2}$ pb ; at 13.6 TeV: $87.9^{+2.0+2.4}_{-1.9-2.4}$ pb

$t\bar{t}W$ production (in collaboration with Chris Foster)

observation of $t\bar{t}W$ events at 7, 8, 13 TeV collisions at the LHC

measurements are significantly higher than theoretical predictions

QCD corrections at NLO are large, $\sim 47\%$ at 13.6 TeV

electroweak corrections are smaller but significant

further improvement in theoretical accuracy by the inclusion of higher-order soft-gluon corrections

NLO expansions closely approximate exact NLO results for total cross sections and top-quark p_T and rapidity distributions

NNLO expansions (aNNLO) are consistent with (almost exact) NNLO results for total cross sections

approximate $N^{3}LO$ (aN³LO) QCD + NLO electroweak is state of the art

Cross sections for $t\bar{t}W$ production

large *K*-factors

improved agreement with data at $aN^{3}LO$

$t\bar{t}W$ cross sections

$t\bar{t}W$ cross sections (fb) in pp collisions at the LHC								
σ in fb	7 TeV	8 TeV	$13 \mathrm{TeV}$	$13.6 \mathrm{TeV}$	$14 \mathrm{TeV}$			
LO QCD	${}^{128}_{-28}^{+39}$	172^{+51}_{-36}	${}^{445}_{-84}^{+114}$	481^{+121}_{-90}	506^{+126}_{-94}			
lo QCD+EW	135^{+41}_{-29}	$\substack{182 + 53 \\ -38}$	467^{+119}_{-88}	$505 + 127 \\ -94$	531^{ig+132}_{ig-98}			
NLO QCD	164^{ig+13}_{ig-17}	226^{+20}_{-23}	$646 {+83 \atop -74}$	$708 {+94 \atop -82}$	$750^{egin{array}{c}+101\-88\end{array}}$			
NLO QCD+EW	175^{+12}_{-17}	$^{239}_{-23}^{+19}$	$677^{egin{array}{c} +80 \\ -74 \end{array}}$	$741 {+90 \\ -82}$	785^{+97}_{-88}			
aNNLO QCD	179^{+6}_{-10}	$^{246}_{-15}^{+9}$	720^{+29}_{-43}	$791 {+32 \atop -47}$	837^{+34}_{-50}			
aNNLO QCD $+$ NLO EW	190^{+6}_{-10}	259^{+9}_{-15}	$751^{egin{array}{c}+27\-43\end{array}}$	$824 {+29 \\ -47}$	872^{+31}_{-50}			
aN ³ LO QCD	185^{+5}_{-8}	253^{+7}_{-12}	748^{+24}_{-19}	$822 + 26 \\ -20$	870^{+28}_{-21}			
$aN^3LO QCD + NLO EW$	$196 {+5 \atop -8}$	266^{+7}_{-12}	779^{+22}_{-19}	$855 {+23 \atop -20}$	905^{+25}_{-21}			

At 13.6 TeV

NLO QCD corrections \rightarrow 47%

aNNLO QCD corrections \rightarrow 17%

 $aN^{3}LO \ QCD \ corrections \rightarrow 6\%$

electroweak NLO corrections \rightarrow 7%

Total aN³LO QCD+NLO EW cross section is 78% bigger than LO QCD

Comparison with 8 and 13 TeV CMS and ATLAS data NLO and even aNNLO results are not sufficient we need aN^3LO corrections to describe the data

At 8 TeV, measurements from CMS: 382_{-102}^{+117} fb and from ATLAS: 369_{-91}^{+100} fb Theoretical prediction is

 $aN^{3}LO \ QCD + NLO \ EW: 266^{+7}_{-12-6} \ fb$

At 13 TeV, CMS finds 868 ± 65 fb with $t\bar{t}W^+$ 553 ± 42 fb and $t\bar{t}W^ 343 \pm 36$ fb while ATLAS finds 880 ± 80 fb with $t\bar{t}W^+$ 583 ± 58 fb and $t\bar{t}W^ 296 \pm 40$ fb

Theoretical prediction is aN³LO QCD + NLO EW: 779_{-19-13}^{+22+12} fb with $t\bar{t}W^+$ 517_{-12-9}^{+14+8} fb and $t\bar{t}W^ 262_{-7-4}^{+8+4}$ fb

Top-quark p_T and rapidity distributions in $t\bar{t}W$ production at 13 TeV

K-factors decrease at larger top p_T

K-factors increase at larger rapidities

Top-quark p_T and rapidity distributions in $t\bar{t}W$ at 13.6 TeV

K-factors decrease at larger top p_T K-factors increase at larger rapidities

Summary

- higher-order corrections for top-quark production processes
- $t\bar{t}$ production
- *tW* production
- $t\bar{t}W$ production
- soft-gluon resummation and aNNLO, aN³LO expansions
- results for total cross sections and differential distributions
- higher-order corrections further enhance and improve the theoretical predictions
- good agreement with LHC data