Massive diphoton production at NNLO

Federico Coro - ICHEP 2024

Phys. Lett. B 848 (2024) 138362 J. High Energ. Phys. 2023, 105 (2023) Ongoing work

Vniver§itat ið València

Outline of the talk

Introduction

Two-loop form factors

MIs evaluation

Phenomenological results

Conclusions

Motivations

Diphoton is an experimentally clean final state

Important to measure the fundamental parameters within the Standard Model

State of the art

Massless NNLO QCD accuracy (5lf)

[S.Catani, L.Cieri, <u>D.de</u> Florian, G.Ferrera, M.Grazzini] [J.M.Campbell, R.K.Ellis, Y.Li, C.Williams] [R.Schuermann,X.Chen,T.Gehrmann,E.W.N.Glover,M.Höfer,A.Huss]

Elements for N^3LO

[Z.Bern, A.De Freitas, L.J.Dixon] [F.Caola, A.Chakraborty, G.Gambuti, A.Von Manteuffel, L.Tancredi] [H.A.Chawdhry, M.Czakon, A.Mitov, R.Poncelet] [B.Agarwal, F.Buccioni, A.Von Manteuffel, L.Tancredi] [S.Badger,T.Gehrmann,M.Marcoli,R.Moodie]

First order EW/QED

[M.Chiesa, N.Greiner, M.Schönherr, F.Tramontano] [L.Cieri,G.Sborlini]

[F.Maltoni, M.K.Mandal, X.Zhao]

Federico Coro

Massive Corrections

[J.M.Campbell, R.K.Ellis, Y.Li, C.Williams]

[F.Buccioni, J-N.Lang, J.M.Lindert, P.Maierhofer, S.Pozzorini,H.Zhang,M.Zoller]

Original results and main focus of the talk

Evaluated for the final result

Computational pipeline

Federico Coro

Analytic Information: Canonical Basis, Boundary Conditions, Maximal Cut

Form factors

The bare scattering amplitude

$$\mathscr{A}_{q\bar{q},\gamma\gamma} = \alpha_{em} \delta_{ij} \epsilon_{\lambda_3}^{*\mu}(p_3) \epsilon_{\lambda_4}^{*\nu}(p_4) \bar{v}_{s_2}(p_2) \mathscr{A}_{\mu\nu}(s,t,u,m_t^2) u_{s_1}(p_1)$$

Can be decomposed in terms of a set of four independent tens

$$\Gamma_{1}^{\mu\nu} = \gamma^{\mu} p_{2}^{\nu}, \ \Gamma_{2}^{\mu\nu} = \gamma^{\nu} p_{1}^{\mu}, \ \Gamma_{3}^{\mu\nu} = p_{3,\rho} \gamma^{\rho} p_{1}^{\mu} p_{2}^{\nu}, \ \Gamma_{4}^{\mu\nu} = p_{3,\rho} \gamma^{\rho} g^{\mu}$$

The form factors admits a perturbative expansion in α_s

Massive contribution appears at $\mathcal{O}(\alpha_s^2)$

$$\mathcal{F}_{k}^{(2)} = \delta_{ij} C_F(4\pi\alpha_{em}) \left[Q_q^2 \mathcal{F}_{k,top;0}^{(2)} + Q_t^2 \mathcal{F}_{k,top;2}^{(2)} \right]$$

Federico Coro

sors
$$\mathscr{A}_{q\bar{q},\gamma\gamma}(s,t,m_t^2) = \sum_{i=1}^4 \mathscr{F}_i(s,t,m_t^2)\bar{v}(p2)\Gamma_i^{\mu\nu}u(p_1)\epsilon_{3,\mu}\epsilon_{4,\nu}$$

 $\mu
u$ [F.Caola, A.Von Manteuffel, L.Tancredi]

$$\mathcal{F}_{k} = \mathcal{F}_{k}^{(0)} + \left(\frac{\alpha_{s}^{B}}{\pi}\right) \mathcal{F}_{k}^{(1)} + \left(\frac{\alpha_{s}^{B}}{\pi}\right)^{2} \mathcal{F}_{k}^{(2)} + \cdots$$

 Q_q is the charge of light quark Q_t is the charge of heavy quark

Two-loop Feynman diagrams

 $q(p_1) + \bar{q}(p_2) \rightarrow \gamma(p_3) + \gamma(p_4)$ At partonic level the scattering process is:

External particles on-shell and the top quark running in the loop

Feynman diagrams generated with **QGRAF** [P. Nogueira] and **FeynArts** [T.Hahn]

PLB

Master Integrals

PLA and PLB Master Integrals

NPL Master Integrals

Federico Coro

ICHEP 2024

[M.Becchetti, R.Bonciani]

Original MIS

Master Integrals

Federico Coro

ICHEP 2024

Evaluation of the Mls - PLA family:

The MIs are computed through the differential equations method:

$$d\underline{f}(\underline{x},\epsilon) = \epsilon dA(\underline{x})\underline{f}(\underline{x},\epsilon)$$

$$A(\underline{x}) = \sum c_i log(w_i(\underline{x}))$$

$$W_{PLA} = \{w_i(\underline{x})\} \longrightarrow \text{Set of 21 letters}$$

$$\texttt{Cons of analytic}$$

$$\texttt{evaluation :} & \texttt{Non tri}$$

$$\texttt{Big exp}$$

Federico Coro

Canonical Logarithmic form [J.M.Henn]

simultaneously linearizable square roots

vial solution!

pressions!

ICHEP 2024

Evaluation of the MIs - PLB family:

Obtained by integrating analytically its differential equations

We don't need to set up a system of DEs for PLB

Federico Coro

All the MIs coming from the PLB family, except J_{21} , are equal to one of the other two topologies PLA and NPL

ICHEP 2024

Evaluation of the Mls - NPL family

$$d\underline{g}(\underline{x}, \epsilon) = \epsilon dA(\underline{x})\underline{g}(\underline{x}, \epsilon) + d\tilde{A}(\underline{x}, \epsilon)\underline{g}(\underline{x}, \epsilon)$$
Canonical
Logarithmic
Elliptic
Sectors

 $W_{NPL} = \{w_i(\underline{x})\}$ Set of 30 letters

Federico Coro

Two different subsets

13

A Nine square roots in the alphabet

- * Non trivial solution!
- Integrals involving eMPLs kernels

Non-planar triangle

The two sectors (0,1,1,1,1,1,1,0,0) and (1,1,1,1,1,1,0,0) for the NPL family are elliptic

$$MC(-\sqrt{1}) \propto \frac{1}{s} \int \frac{dz}{\sqrt{z(z+s)(z(s+z)-4sm_t^2)}}$$

Federico Coro

ICHEP 2024

$$(s+t+z)-4sm_t^2)$$

The two elliptic curves are the same!

[G.Fontana]

Generalised power series approach

$$\underline{f}(t,\epsilon) = \sum_{k=0}^{\infty} \epsilon^k \sum_{i=0}^{N-1} \rho_i(t) \underline{f}_i^{(k)}(t) \qquad \qquad \rho(t) = \begin{cases} 1 & \text{if } t \in [t_i - r_i, t_i + r_i) \\ 0 & \text{if } t \notin [t_i - r_i, t_i + r_i) \end{cases} \qquad \qquad \underline{f}_i^{(t)} = \sum_{l_1=0}^{\infty} \sum_{l_2=0}^{N_{i,k}} c_k^{(i,l_1,l_2)}(t-t_i)^{l_1/2} log(t-t_i)^{l_1/2} log(t-t_i)^{l_$$

[R. N. Lee, A. V. Smirnov, V. A. Smirnov]

[M.K.Mandal,X.Zhao]

[F.Moriello]

Series solutions around DEs singular points

It doesn't depend on the function space, so it allows us to avoid elliptic integrals

Values at arbitrary phase-space points

Can be used to perform phenomenological studies

Numerical evaluation of the Master Integrals

Federico Coro

ICHEP 2024

	I	I	1	1	I	I	'-
							_
							-
							-
	-	-					_
				-	~	_	_
					~		-
							-
							_
							_
							_
							-
							-
							_
							_
					•••		-
					X		
							_
							-
							-
							_
							_
							-
							-
Λ		1	-	6	_ nn		
U				U	00		

Numerical evaluation of the Hard Function

We prepared the numerical grid in the $2 \rightarrow 2$ physical phase-space region

Federico Coro

24 different values

573 different values

13752 points

Planar Topology MIs in
$$O(2.5h)$$

On a single core!

Non-planar Topology MIs in O(10.5 h)

Photon production and isolation criteria

Direct component

Experimentally photons must to be isolated

Isolation reduces fragmentation component

$$E_T^{had}(r) \le \epsilon p_{T_{\gamma}} \chi(r; R)$$

No quark-photon collinear divergences

No fragmentation component

Phenomenological Results

 $2\gamma NNLO$

Upper panel: ratio between the fully massive
and massless NNLO
$$M_{\gamma\gamma} \sim 2m_t$$
 Negative peak \rightarrow Size of the ratio $M_{\gamma\gamma} > 2.3 \cdot 2m_t$ The tail decreases
Lower panel: ratio between the fully massive
and massless one-loop box

For $M_{\gamma\gamma} \gg m_t$ the massive one-loop box contribution behaves as if it were composed by 6 light-quark flavors

$$\frac{(\sum_{n_f} e_q^2)^2}{(\sum_{n_f=5} e_q^2)^2} = \frac{225}{121}$$

Phenomenological Results

Ratio between the fully massive and massless
invariant mass distribution at NNLO
$$M_{\gamma\gamma} \sim 2m_t$$
 Negative peak
 $M_{\gamma\gamma} < 2m_t$ Massive corrections smaller than the massless one
 $M_{\gamma\gamma} > 2m_t$ Massive corrections larger than the massless one
In the invariant mass region 1 GeV < $M_{\gamma\gamma} < 2$ TeV
deviation from the massless result in the range
 $[-0.4\%, 0.8\%]$

ICHEP 2024

Phenomenological Results

Ratios of each one of the massive contributions with respect to the NNLO massless cross section as a functions of the invariant mass

ICHEP 2024

Conclusions

We computed the full NNLO QCD corrections to diphoton production

The massive two loop $q\overline{q}$ -channel is one of the sizeable massive corrections

Important corrections around the top quark threshold and along the distribution tail

Outlooks

Analytic computation of the amplitude

Inclusion of the partial massive N^3LO

Thank you for your allention!