Electroweak input parameter schemes and precise theoretical predictions for Drell-Yan

Mauro Chiesa

INFN ICHEP 2024, July 17-24

Based on M. C., C.L. Del Pio, F. Piccinini, Eur. Phys. J.C 84 (2024) 5, 539

NLO EW corrections

In one way or another NLO EW effects included or accounted for in many LHC measurements

Weak corrections and EW input parameters

Interplay between EW input parameter choices and theory uncertainties/theory accuracy*

Very important for high-precision measurements, like the weak mixing angle at the LHC

Setup

- Focus on weak corrections to NCDY (weak mixing angle measurement)
- Accuracy NLO weak w/w-o leading fermionic corrections ($\Delta \alpha, \Delta \rho$) up to α^2
- Calculation implemented/results obtained with POWHEG-BOX-V2/Z_ew-BMNNPV*

svn co --username anonymous --password anonymous svn://powhegbox.mib.infn.it/trunk/User-Processes-V2/Z_ew-BMNNPV revision 4067,

arXiv:2402.14659, 2302.10782, 1906.11569, 1612.02841, 1302.4606

*Monte Carlo event generator for NCDY at NLO QCD +NLO EW matched to QCD and QED parton shower. Accuracy available few other generators:

POWHEG-BOX-V2/W_ew-BMNNP arXiv:1202.0465, 1612.02841

POWHEG-BOX-RES/HW_ew, POWHEG-BOX-RES/HZ_ew, POWHEG-BOX-RES/HWj_ew, POWHEG-BOX-RES/HZj_ew arXiv:1706.03522 POWHEG-BOX-RES/VV_dec_ew arXiv:2005.12146

POWHEG-BOX-RES/vbs-ssww-nloew (*) arXiv:1906.01863

POWHEG-BOX-RES/Hjj_ew (*) arXiv:2208.00013

EW input parameters choice

• There are 3 independent parameters (beside fermion and Higgs masses)

- Some possible choices:
- 1) (α, M_w, M_z) : largely used at the LHC
- 2) $(\alpha, \sin^2 \theta_{eff}^l, M_z)$: useful for sw2 extraction via template fits beyond LO arxiv:1906.11569
- 3) (α_0, G_μ, M_z) : LEP1 scheme, all parameters measured at high accuracy

4) $(\alpha_{\overline{MS}}, s_{W, \overline{MS}}^2, M_Z)$: useful for sw2 measurement at high-energy arxiv:2402.14659, 2302.10782

 α stands for either α_0 , $\alpha(M_z)$, $\alpha(G_\mu)$

EW input parameters choice

Possible criteria

• Size of radiative corrections/convergence of perturbative expansion/missing higher-order effects

• Experimental precision on inputs/parametric uncertainties on predictions

• Need of having a specific free parameter to perform fits (see MW and sw measurements)

Size of radiative corrections: example

Free parameters and template fit measurements

Stability of sensitivity to $s_{W,eff}^2$ against radiative corrections

MS-bar running

J. Erler and M. Schott, Progr. Part. Nucl. Phys. 106, 68-119, 2019

Predictions from different EW input schemes

Smaller effects: overall $\Delta \alpha$, $\Delta \rho$ largely cancel in Asymmetry

Predictions from different EW input schemes

All schemes actually independent: input pars taken from data, no tuning attempt whatsoever

Spread of the predictions measurement of theory uncertainties ~some 10^-4 (relevant for sw2 measurement)

But...

1) might be an overestimate: schemes with coupling effectively defined at MZ have smaller corrections and thus smaller missing h.o. effects (compared to the schemes using $\alpha(0)$, that give the larger spread). Resulting spread ~10^-5

2) different approach at LEP1: comparison of schemes with TUNED input parameters as a function of (α, G_{μ}, M_z)

Predictions for LEP1-like tuning to (α, G_{μ}, M_z)

Start from (α, G_{μ}, M_{z})

Compute $\Delta r_X(X)$, X being M_W , $s^2_{W,eff}$, $s^2_{W,\overline{MS}}(M_Z)$

Derive X from the relation between $\Delta r_x(X)$ and the parameters (α, G_{μ}, M_z)

Conclusions

• Electroweak input parameter choice connected to accuracy of theory predictions/theory uncertainties

 Update on new Z_ew-BMNNPV: new calculation scheme implemented, in particular the ones designed for the weak mixing angle measurement

Spares

Parametric uncertainties: examples

 $M_{top} = 173.0 \pm 0.4 \, GeV$

 $M_{W} = 80.385 \pm 0.015 \, GeV$

Th. uncertainties from other details of the calculation

