Realistic extraction of polarisation and spin-correlation coefficients in di-boson processes at the LHC

ICHEP24 – parallel talk Prague 20th July 2024

Funded by the European Union

Michele Grossi, PhD

In collaboration with Giovanni Pelliccioli and Alessandro Vicini

Polarization and Spin correlations – WHY?

LHC luminosities accumulated in Run 2 (≈ 150 fb-1) and foreseen in next runs (300 fb−1 in Run 3, and 3000 fb−1 in High-Lumi) at 13/14 TeV CoM energy enable precise measurements of EW processes: multi-boson production

- are crucial probes of interplay between gauge and scalar sector in SM
- provide discrimination power between SM and new physics (NP)
- **allow to construct quantum observables for entanglement tests**

The theoretical study and the experimental extraction of such pseudoobservables is thus of prime importance for the present and upcoming physics programme of the LHC

We cannot directly measure the spin state of EW bosons but we can *extract spinsensitive coefficients from angular distributions that reflect polarisation state of the decayed V boson*

Angular dependence for boson system

At tree-level, decay of a single resonant boson $(\vartheta^*\varphi^*)$ are angles in V rest frame, w.r.t. V direction in some Lorentz frame)

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta\,\mathrm{d}\phi\,\mathrm{d}\mathcal{X}} = \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{X}} \left[\frac{1}{4\pi} + \sum_{l=1}^{2} \sum_{m=-l}^{l} \alpha_{lm}(\mathcal{X}) \, Y_{lm}(\theta, \phi) \right]
$$

At tree-level, decay of 2 resonant boson (e.g. ZZ): *8 independent coefficients extracted through projections*

with no cut they represent a complete basis for the $1 \leq 2$ angular structure d_{σ} [1

$$
\frac{d\sigma}{d\cos\theta_1 d\phi_1 d\cos\theta_3 d\phi_3 d\mathcal{X}} = \frac{d\sigma}{d\mathcal{X}} \left[\frac{1}{(4\pi)^2} + \frac{1}{4\pi} \sum_{l=1}^{2} \sum_{m=-l}^{l} \alpha_{lm}^{(1)}(\mathcal{X}) Y_{lm}(\theta_1, \phi_1) + \frac{1}{4\pi} \sum_{l=1}^{2} \sum_{m=-l}^{l} \alpha_{lm}^{(2)}(\mathcal{X}) Y_{lm}(\theta_1, \phi_1) + \frac{1}{4\pi} \sum_{l=1}^{2} \sum_{m=-l}^{l} \alpha_{lm}^{(3)}(\mathcal{X}) Y_{lm}(\theta_3, \phi_3) + \frac{1}{4\pi} \sum_{l=1}^{2} \sum_{m=-l}^{l} \alpha_{lm}^{(3)}(\mathcal{X}) Y_{lm}(\theta_3, \phi_3) + \sum_{l=1}^{2} \sum_{l=1}^{2} \sum_{m=-l}^{l} \alpha_{lm}^{(3)}(\mathcal{X}) Y_{lm}(\theta_3, \phi_3) + \sum_{l=1}^{2} \sum_{l=1}^{2} \sum_{m=-l}^{l} \sum_{m=-l}^{l} \gamma_{lm} \sum_{l=3}^{l} \gamma_{lm} \sum_{l=1}^{l} \gamma_{lm} \left(\theta_1, \phi_1 \right) Y_{l,3m_3}(\theta_3, \phi_3) \right]
$$
\n
$$
\overset{\text{Eig. M frame}}{\longrightarrow}
$$
\n<math display="</math>

Angular coefficients and quantum entanglement

The differential cross section for the process $ZZ \rightarrow I^+I I^-I I^+I I^-$ can be written with an explicit connection to the components of the spin density-operator of the two vector bosons [1]

The general spin state of the ZZ system is described by a density operator, ρ, acting on the (dim 9) Hilbert space defined by the three spin states of each Z

$$
\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} = \left(\frac{3}{4\pi}\right)^2 \text{Tr} \left\{\rho \left(\Gamma_1 \otimes \Gamma_2\right)^T\right\}
$$

decay density matrix of a Z boson into charged leptons

4

[1] *J. A. Aguilar-Saavedra et al. - Phys. Rev. D 107, 016012*

M.Grossi - ICHEP24 - Prague

Angular coefficients and quantum entanglement

Is the system entangled (non-classical)? What are the criterion?

The ZZ boson system is equivalent to a qutrit system the Peres-Horodecki condition for entanglement is not just sufficient (like for qubit, spin ½ system) , but also necessary

 $C_{2,1,2,-1} \neq 0$ or $C_{2,2,2,-2} \neq 0$ $\mathcal{C}(\rho) = \inf \left[\sum_i p_i c(\ket{\psi_i}) \right]$ Entangled if > 0 Concurrence $(\mathcal{C}(\rho))^2 \geq 2 \max (0, \text{Tr} [\rho^2] - \text{Tr} [\rho_A^2], \text{Tr} [\rho^2] - \text{Tr} [\rho_B^2]) \equiv \mathcal{C}_{\text{LB}}^2$ $(\mathcal{C}(\rho))^2 \leq 2 \min \left(1 - \text{Tr}[\rho_A^2], 1 - \text{Tr}[\rho_B^2]\right) \equiv \mathcal{C}_{\text{UB}}^2$

We can define even the conditions for the violation of Bell inequalities \rightarrow we needs a strong quantum correlation, a the specific choice of the observables.

For further details see: J. A. Aguilar-Saavedra et al. - Phys. Rev. D 107, 016012 and Fabbrichesi at al. - Eur. Phys. J. C 83, 823 (2023)

Concurrence and quantum entanglement

It is possible to compute the observable quantifying the entanglement in the gauge boson system once the coefficients *fa*, *ga* and *hab* are known

For further details see: J. A. Aguilar-Saavedra et al. - Phys. Rev. D 107, 016012 and Fabbrichesi at al. - Eur. Phys. J. C 83, 823 (2023)

Where are the issues: coefficient extraction

Ideal setting: coefficients extracted directly from data through projections up to $l_{1,3} = 2$ of the angular distributions $d\sigma/d\Omega_1 d\Omega_3$

Real setting (main consideration):

- assumes two spin-1 resonances being produced
- assumes two-body decays
- is not invariant under Lorentz boosts
- is not described by $l_{1,3} \leq 2$ if selection cuts are applied

 $d\sigma$ $d\cos\theta_1 d\phi_1 d\cos\theta_3 d\phi_3 d\mathcal{X}$

Contribution of this talk:

Effect of high order correction

7

Effect of kinematic cuts

RESULTS – HO correction

Angular coefficients for **ZZ at LO, NLO QCD and NLO EW** accuracy for the full off-shell process. All numbers have been computed integrating fully differential weights from POWHEG-BOX- RES multiplied by suitable combinations of spherical harmonics $(l \leq 2)$ in the decay angles. Numerical uncertainties are shown in parantheses. A fixed renormalisation and factorisation scale $\mu_F = \mu_R = M_Z$ is assumed, inclusive setup: $81 \text{ GeV} < M_{\ell^+\ell^-} < 101 \text{ GeV}$

- Higher-rank spherical harmonics appear with three-body decay: QED/QCD radiation of decay products
- QCD radiation sizeably changes longitudinal components, although angular expansion defined in ZZ CM frame, small EW effects
- QCD channel changes helicity structure, fraction of polarization components

Spin correlations for $Y_{2,0,2,0}$ in ZZ

Projection on $l = 2$ sph. Harm related to longitudinal production:

$$
\int\! d\Omega_1 \int\! d\Omega_3 \; Y_{2,0}(\theta_1,\phi_1) \, Y_{2,0}(\theta_3,\phi_3) \frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_3} = \gamma_{2,0,2,0} \\ f_L^{(i)} = \frac{1}{3} \left(1 - 4 \sqrt{5\pi} \, \alpha_{2,0}^{(i)} \right), \quad f_{LL} = \frac{1}{3} \left(1 - 4 \sqrt{5\pi} \, \alpha_{2,0}^{(1)} - 4 \sqrt{5\pi} \, \alpha_{2,0}^{(3)} + 80\pi \, \gamma_{2,0,2,0} \right)
$$

Level of correlation between the two bosons, R_{c} [ATLAS 2211.09435]

$$
R_c = \frac{f_{\text{LL}}}{f_{\text{L}}^{(1)} f_{\text{L}}^{(3)}} = \frac{1 - 4\sqrt{5\pi} \, \alpha_{2,0}^{(1)} - 4\sqrt{5\pi} \, \alpha_{2,0}^{(3)} + 80\pi \, \gamma_{2,0,2,0}}{1 - 4\sqrt{5\pi} \, \alpha_{2,0}^{(1)} - 4\sqrt{5\pi} \, \alpha_{2,0}^{(3)} + 80\pi \, \alpha_{2,0}^{(1)} \, \alpha_{2,0}^{(3)}}
$$

RESULTS – kinematic cuts

Angular coefficients for **ZZ NLO QCD** accuracy for the full offshell process.

All numbers have been computed integrating fully differential weights from POWHEG-BOX- RES

multiplied by suitable combinations of spherical harmonics

 $(l \leq 2)$ in the decay angles.

Numerical uncertainties are shown in parantheses. A fixed

renormalisation and factorisation scale $\mu_F = \mu_R = M_Z$ is assumed.

- Angular expansion (I ≤ 2 spherical harmonics) valid fully differentially and after integration, if no cuts are applied on decay products
- Fiducial cut triggers angular modulation f_{cut} which is not a combination of $I \le 2$ spherical harmonics:

$$
\int_{-1}^1 d\cos\theta^* \int_0^{2\pi} d\phi^* \ Y_{\ell m}(\theta^*,\phi^*) \frac{d\sigma}{d\cos\theta^* d\phi^*} f_{\text{cut}}(\theta^*,\phi^*) \neq \sigma_{\text{cut}} \alpha_{\ell m}
$$

Conclusion

- Polarizations are framed in the spin density matrix and correlations can also be used to measure quantum entanglement
- This is a way of testing of quantum mechanics beyond electrodynamics with *weak and strong interactions* in presence of states with more than 2 *dof* (polarization of massive spin-1 particle)
- Angular decay structure gives access to spin-density matrix (*aka quantum state tomography*)
- For VV systems, expansion for $1 ≤ 2$ in spherical harmonics has limited validity:
	- fiducial cuts disrupt $l \leq 2$ expansion, extrapolation needed
	- NLO correction sizeably change the angular coefficients
	- All entanglement observables so far constructed at LO: higher orders unavoidable!

Outlook

- Similar studies on decay of the decay of a SM Higgs-boson into massless charged leptons
- Angular acceptance induced by fiducial cuts and neutrino reconstruction in the SM and in the presence of SMEFT effects at NLO QCD accuracy for the full offshell W+Z process

Acknowledgement

• **This work was supported by a STSM Grant from COST Action CA22130 as a Dissemination Conference Grants**

