Machine learning reweighting of MC parameters and MC samples of top quark production in CMS

CMS-PAS-MLG-24-001

Valentina Guglielmi on behalf of CMS collaboration

ICHEP, Prague, 20.7.2024

HELMHOLTZ

Projections for the CMS Computing needs for HL-LHC

High-Luminosity LHC computing demands will be challenging even in optimistic scenarios

Monte Carlo simulations

Monte Carlo (MC) samples used to compare data to theory predictions

Workflow process:

- Generation of the physics event at NLO \rightarrow Relatively cheap (~seconds) • Simulation of the detector \rightarrow Expensive (~minutes)

DESY.

MC modelling uncertainties

MC modelling uncertainties limiting factor in analyses

~10 different systematics uncertainties which independent samples

 \rightarrow High computational cost

→ **Reweighting:** incorporate all the relevant vasingle sample, (avoids the need of simulating de response many times)

n many	Example: CMS $t\overline{t}$ systematics	
	Systematic	CMS
h require	Nominal	PowhegPythia8
	PDFs	PDF4LHC recommendations
	NLO matching	Reweights top pT to NNL
ariations in a etector	Initial State Radiation	7-point variations of μ_R^{ME} + indep vars of hdamp &
	Final State Radiation	Variations of $\mu_R^{PS, R}$
	B-fragmentation	Variations of r _B paramete Pythia8
	Hdamp	2-point variations hdam
	Top mass and width	6-point variation each
	Underlying Event	Tune variations (CP5) - different CR models
	Hadronization	Pythia6 vs Herwig++

Reweighting prescription

Reweight the nominal MC sample to its variations using event weigths

Consider two MC samples, described by probability densities $p_0(x)$, $p_1(x)$ for $x \in \Omega$ (phase space):

• Ideal event-level weight: $w(x) = p_0(x)/p_1(x)$

Standard reweighting \rightarrow Ratio in bins of two distributions

- Sensitive to the binning chosen
- Going beyond a small number of input dimensions is difficult

Machine Learning for reweighting

- Naturally takes **multidimensional** and **unbinned** inputs \bullet
- **Continuous** as a function of MC parameters

Neural network learns to approximate the likelihood ratio $w = p_0(x)/p_1(x)$ (arXiv:1506.02169)

Machine Learning for reweighting

- Naturally takes **multidimensional** and **unbinned** inputs
- **Continuous** as a function of MC parameters

Neural network learns to approximate the likelihood ratio $w = p_0(x)/p_1(x)$ (arXiv:1506.02169)

- Boosted Decision Tree: JPC (2016) 762
- Neural Network: arXiv:1506.02169, PRD 101 (2020) 091901, PRD 105 (2022) 076015
- Input convex neural networks: arXiv:1609.07152
- Normalising flow: Commun. Pure Appl. Math. 66 (2013) 145, Comm. Math. Sci. 8 (2010) 217

The Method: DCTR

Deep neural network using Classification for Tuning and Reweighting

Developed by A. Andreassen and B. Nachman (PRD 101 (2020) 091901)

Why DCTR?

Particle 4-vector and PID as inputs

→ Full phase space reweighting

FN-ID • NN parametrised with reweighting parameter θ

→ Continuous reweighting possible

Particle Flow Network (PFN) (JHEP 01 (2019) 121)

Outlook

We used DCTR method to reweight MC samples of top quark production in CMS

- Reweighting of MC parameters → Systematic variations
 - h_{damp} parameter at parton level in POWHEG HVQ
 - B quark fragmentation at particle level in PYTHIA
- Reweight MC to higher-accuracy theory predictions \rightarrow Model reweighting
 - NLO POWHEG HVQ \rightarrow NNLO MiNNLO

We implemented the method in CMS software framework (CMSSW)

- Every analysis involving top quarks can use the already trained models
- The method can be generalised to any physics case after a dedicated retraining
- All the results and implementation in the CMSSW can be found in <u>CMS-PAS-MLG-24-001</u>

Powheg h_{damp} parameter in top pair production

- Important parameter in nominal $t\bar{t}$ MC sample \bullet
- **Damping parameter**, regulating 1^{st} high-pt emission of POWHEG hvq generator
- Variations of h_{damp} considered by CMS/ATLAS to assess ME-PS matching uncertainty

$$F = \frac{h_{damp}^2}{p_T^2 + h_{damp}^2}, \ h_{damp} = h * m_t$$

Example of systematic variation reweighting

h_{damp} reweighting results

• **2 NN models** to reweight CMS nominal sample to the two CMS variations of h_{damp}

e.g. $h_{damp} = 1.379 \cdot m_t \rightarrow h_{damp}^{up} = 2.305 \cdot m_t$

- Parton level (LHE) information as input to the PFN:
 - 4-vector (p_T , y, ϕ , m) and PID [top, antitop]

- Before reweighting: ratio between nominal and up variation sample of h_{damp}
- Method closure within ~2%: ratio between reweighted sample and the target one

DESY.

11

Statistical uncertainty of the method

- Training is repeated 50 times bootstrapping the data \bullet
- The goodness of the reweighting with the 50 trained model is checked and the mean and the standard deviations of the models computed in each bin
- Our model is compatible with the target one within the statistical uncertainty of the method

Pythia B-fragmentation parameter in top pair production

B-fragmentation uncertainty: variations of r_h parameter of Lund-Bowler function in PYTHIA8

$$f_B(z) \propto \frac{1}{z^{1+br_b m_B^2}} (1-z)^a exp(-bm_B^2/z)$$

In CMS only the sample with PYTHIA nominal $r_b = 0.855$ produced, no variations

 \rightarrow Crucial to use a reweighting method to produce the variations

 m_t , m_b : top & b quark mass *a*, *b*: terms related to light quarks r_b : term related to b quark a, b, r_b free parameters to be tuned to data

Example of systematic variation continuous reweighting

B-fragmentation continuous reweighting

- Trained one single NN model to reweight:
 - Whatever value of r_b in [0.6, 1.4] to $r_{b} = 0.855$
 - NN parametrised in θ (i.e. r_b)
- B-hadron momentum fraction respect to b-quark x_b as input to PFN: 1D variable comprising entire event information

$$x_b = \frac{2p_B \cdot q}{m_t^2} / (1 - w), \, w = m_W^2 / m_t^2$$

 p_B : four-vector B-hadron *q*: four-vector top

 m_W : W-boson mass m_t : top mass

• The method works well in all the range $r_b = [0.6, 1.4]$

DESY.

Model reweighting

Generator/Predictions increasingly accurate and available (e.g. NNLOPS: $MiNNLO_{PS}$)

• But difficult (and slow) to regenerate and resimulate all the MC samples

Temporary solution:

NLOPS: POWHEG hvq (JHEP 06 (2010) 043) \rightarrow NNLOPS: MiNNLO (JHEP 05 (2020) 143)

Only events based on the kinematics of tt system reweighted, inclusive over additional ME + PS radiations

\rightarrow Reweighting of Parton Level MC Simulations to higher-accuracy theory predictions

Both interfaced with PYTHIA 8, since the shower effect acts differently on the two generators

Model reweighting results

- **Parton level information as inputs to the PFN:**
 - 4-vector (p_T , y, ϕ , m) and PID [t, \bar{t} , $t\bar{t}$ system] of the showered events

- Before reweighting: ratio between NLO and NNLO generators
- Method closure within ~2%: ratio between reweighted sample and the target one (NNLO)

16

Implementation in CMSSW

User doesn't need to retrain the model, it has just to load the model and compute the weigths to apply to its events

- Trained model saved in ONNX universal format and available in CMSSW (github)
 - Facilitates sharing/usage of NN models across different frameworks
- Weights can be add at whatever analysis stage

• The method is generic, can be used by all analyses

DESY.

Summary and conclusions

- Modelling uncertainties are already a major source of uncertainty at LHC
 - Computational cost is a bottleneck (many alternative samples to be produced)
 - The current conditions will not be sustainable at HL-LHC
- ML-assisted reweighting of Monte Carlo samples (DCTR) solves the bottleneck
 - First use of DCTR for a real CMS analysis application
 - Reweighted uncertainties model with high precision traditional approach
- Many other applications in any physics field can be investigated
 - MC tuning at detector level
 - PYTHIA vs Herwig reweighting
 - Unbinned and full phase space unfolding

DESY.

•

Thank you

Backup

Powheg *h*_{*damp*} **parameter in top pair production**

Heavy quark process of Powheg (arxiv1002.2581):

- Nominal CMS: $h_{damp} = 1.379 \cdot m_t$
- 2 CMS variations:

•
$$h_{damp}^{down} = 0.8739 \cdot m_t$$
 $h_{damp}^{up} = 2.305 \cdot m_t$

For computation reasons, variation samples produced with less than half the events of the nominal sample \rightarrow Decrease precision of analyses

 \rightarrow Reweighting: same number of events in nominal and variations samples

21

h_{damp} reweighting results

All results from CMS-PAS-MLG-24-001

22

h_{damp} reweighting after the shower

- The model is trained at parton level using LHE information \bullet

• The reweighting works well also after showering the events (hvq interfaced with PS generator Pythia)

r_b parameter reweighting results

- Goodness of reweighting checked with a reweighting closure:
 - Comparison between reweighted and target sample
 - Target: sample generated with $r_b = 1.056$
 - Reweighted sample: sample generated with $r_b = 0.855$ and reweighted to $r_b = 1.056$ using a test sample

- Test sample: 500k events generated for each r_b value, orthogonal to trained and validation samples
- Reweighting closure within 2% up to $x_b < 1$

DESY.

24

r_b parameter reweighting results

DESY.

MiNNLO reweighting

The method works well also on observable we didn't train on

All results from CMS-PAS-MLG-24-001

MiNNLO reweighting: top observables

All results from CMS-PAS-MLG-24-001

DCTR compared to 2D bin reweighting

Comparing DCTR to 2D bin reweighting

- The 2D reweighting is done with p_T and η of $t\bar{t}$ system
- Check the goodness of the two reweightings on $p_T(t\bar{t})$

Both methods work well on variables used in the 2D reweighting

28

DCTR compared to 2D bin reweighting

Comparing DCTR to 2D bin reweighting

- The 2D reweighting is done with p_T and η of $t\bar{t}$ system
- Check the goodness of the two reweightings on $p_T(t)$

- 2D reweighting improves $p_T(t)$ but still large deviations respect target
- DCTR uses the whole phase space for reweighting

 \rightarrow It works well on any projections

Example of impact of MC modelling uncertainty in analyses

Dealing with negative Event weights

$$L_{BCE}(f) = -\frac{1}{N} \sum_{i}^{N} w_i^{MC}(y_i \cdot \log f(x_i))$$
$$L_{MSE}(f) = \frac{1}{N} \sum_{i}^{N} w_i^{MC}(f(x_i) - y_i)^2$$

f(xi): predicted probability (between 0,1) w^{MC}: MC event weight

$(1 - y_i) \cdot \log(1 - f(x_i))$

yi: true label of each event (between 0 or 1 according to which class it belongs to)

Technical information: PFN architecture

- Technical details:
 - Latent space dimension: 1=128
 - Activation func: ReLu
 - Classification output func: softmax
 - Loss func: crossentropy loss
 - **Optimizer:** Adam***
 - Learning rate: 0.01**
 - Early stopping with patience 10 ****

*** to update the NN parameters (weights and biases), to minimise the cross-entropy loss function for 100 epochs. ****To prevent overfitting

All models are implemented in Keras with the Tensorflow backend

This architecture has been already optimised by the authors for particle physics.