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Projections for the CMS Computing needs for HL-LHC

High-Luminosity LHC computing demands will be challenging even in optimistic scenarios

CMS-NOTE-2022-008: CMS Phase-2 Computing Model

https://cds.cern.ch/record/2815292?ln=en
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Monte Carlo simulations

Monte Carlo (MC) samples used to compare data to theory predictions 

Workflow process:  

• Generation of the physics event at NLO → Relatively cheap (~seconds)  

• Simulation of the detector → Expensive (~minutes)  
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MC modelling uncertainties

MC modelling uncertainties limiting factor in many 
analyses 

~10 different systematics uncertainties which require 
independent samples 

High computational cost 

 Reweighting: incorporate all the relevant variations in a 
single sample, (avoids the need of simulating detector 
response many times)

→

→

Example: CMS  systematicstt̄
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Reweighting prescription

Reweight the nominal MC sample to its variations using event weigths 

Consider two MC samples, described by probability densities ,  for  (phase space): 

• Ideal event-level weight:   

p0(x) p1(x) x ∈ Ω

w(x) = p0(x)/p1(x)

Standard reweighting  Ratio in bins of two distributions 

• Sensitive to the binning chosen 

• Going beyond a small number of input dimensions is difficult 

→

dN/dx → w(x) × dN/dx

dN/dx

x

Sample 1 
Sample 2
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Machine Learning for reweighting

Neural network learns to approximate the likelihood ratio  (arXiv:1506.02169)w = p0(x)/p1(x)

• Naturally takes multidimensional and unbinned inputs 

• Continuous as a function of  MC parameters
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https://arxiv.org/abs/1506.02169
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Machine Learning for reweighting

Neural network learns to approximate the likelihood ratio  (arXiv:1506.02169)w = p0(x)/p1(x)

• Naturally takes multidimensional and unbinned inputs 

• Continuous as a function of  MC parameters

°10 °5 0 5

x

0.0

0.1

0.2

0.3

0.4

E
ve

nt
s

Gaus1 (G1) 
Gaus2 (G2) 
G1 reweighted to G2 

- Boosted Decision Tree: JPC (2016) 762


- Neural Network: arXiv:1506.02169, PRD 101 (2020) 091901, 
PRD 105 (2022) 076015 


- Input convex neural networks: arXiv:1609.07152 

- Normalising flow: Commun. Pure Appl. Math. 66 (2013) 145, 
Comm. Math. Sci. 8 (2010) 217

https://arxiv.org/abs/1506.02169
https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012036
https://arxiv.org/abs/1506.02169
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.076015
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.076015
http://www.arxiv.org/abs/1609.07152
https://onlinelibrary.wiley.com/doi/10.1002/cpa.21423
https://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0008/0001/a011/
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Deep neural network using Classification for Tuning and Reweighting 

• Developed by A. Andreassen and B. Nachman  (PRD 101 (2020) 091901) 

Why DCTR? 

• Particle 4-vector and PID as inputs 

 Full phase space reweighting 

• NN parametrised with reweighting parameter  

 Continuous reweighting possible

→

θ

→

The Method: DCTR

Particle Flow Network (PFN) (JHEP 01 (2019) 121)
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https://link.springer.com/article/10.1007/JHEP01(2019)121
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Outlook
We used DCTR method to reweight MC samples of top quark production in CMS 

• Reweighting of MC parameters  Systematic variations 

•  parameter at parton level in POWHEG HVQ  

• B quark fragmentation at particle level in PYTHIA  

• Reweight MC to higher-accuracy theory predictions  Model reweighting 

• NLO POWHEG HVQ  NNLO MiNNLO 

We implemented the method in CMS software framework (CMSSW)  

• Every analysis involving top quarks can use the already trained models 

• The method can be generalised to any physics case after a dedicated retraining 

• All the results and implementation in the CMSSW can be found in CMS-PAS-MLG-24-001

→

hdamp

→

→

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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Powheg  parameter in top pair productionhdamp

• Important parameter in nominal  MC sample 

• Damping parameter, regulating  high-pt emission of POWHEG hvq generator 

• Variations of  considered by CMS/ATLAS to assess ME-PS matching uncertainty 

tt̄

1st

hdamp

,  F =
h2

damp

p2
T + h2

damp
hdamp = h * mt

Example of systematic variation reweighting
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 reweighting resultshdamp

• Before reweighting: ratio between nominal and up 
variation sample of  

• Method closure within ~2%: ratio between reweighted 
sample and the target one 

hdamp

• 2 NN models to reweight CMS nominal sample to the 
two CMS variations of  

e.g.      

• Parton level (LHE) information as input to the PFN:  

• 4-vector ( , y, , m) and PID [top, antitop]

hdamp

hdamp = 1.379 ⋅ mt → hup
damp = 2.305 ⋅ mt

pT ϕ CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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Statistical uncertainty of the method
• Training is repeated 50 times bootstrapping the data 

• The goodness of the reweighting with the 50 trained model is checked and the mean and the standard 
deviations of the models computed in each bin 

• Our model is compatible with the target one within the statistical uncertainty of the method

CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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Pythia B-fragmentation parameter in top pair production

B-fragmentation uncertainty: variations of  parameter of Lund-Bowler function in PYTHIA8 

In CMS only the sample with PYTHIA nominal  produced, no variations 

 Crucial to use a reweighting method to produce the variations

rb

rb = 0.855

→

fB(z) ∝
1

z1+brbm2
B
(1 − z)aexp(−bm2

B/z)
 , : top & b quark mass


, : terms related to light quarks

: term related to b quark 
, ,  free parameters to be tuned to data

mt mb
a b
rb
a b rb

Example of systematic variation continuous reweighting
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B-fragmentation continuous reweighting

• Trained one single NN model to reweight:  

• Whatever value of  in [0.6, 1.4] to 
 

• NN parametrised in  (i.e. )  

• B-hadron momentum fraction respect to b-quark  
as input to PFN: 1D variable comprising entire 
event information

rb
rb = 0.855

θ rb

xb

 xb =
2pB ⋅ q

m2
t

/(1 − w), w = m2
W /m2

t

: four-vector top          : four-vector B-hadron 

: top mass                : W-boson mass

q pB

mt mW

• The method works well in all the range  = [0.6, 1.4] rb
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https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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Model reweighting
Generator/Predictions increasingly accurate and available (e.g. NNLOPS: ) 

• But difficult (and slow) to regenerate and resimulate all the MC samples 

Temporary solution:  

 Reweighting of Parton Level MC Simulations to higher-accuracy theory predictions 

MiNNLOPS

→

MiNNLO
hvq

MiNNLOhvq Both interfaced with PYTHIA 8, since 
the shower effect acts differently on 

the two generators

Only events based on the kinematics of tt system reweighted, inclusive over additional ME + PS radiations

NLOPS: POWHEG hvq (JHEP 06 (2010) 043)  NNLOPS: MiNNLO (JHEP 05 (2020) 143) →

https://link.springer.com/article/10.1007/JHEP06(2010)043
https://link.springer.com/article/10.1007/JHEP05(2020)143
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Model reweighting results
• Parton level information as inputs to the PFN:  

• 4-vector ( , y, , m) and PID [ , ,  system] of the 
showered events

pT ϕ t t̄ tt̄

• Before reweighting: ratio between NLO and NNLO 
generators 

• Method closure within ~2%: ratio between reweighted 
sample and the target one (NNLO)

CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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Implementation in CMSSW
User doesn’t need to retrain the model, it has just to load 
the model and compute the weigths to apply to its events

• The method is generic, can be used by all analyses 

• Trained model saved in ONNX universal format 
and available in CMSSW (github) 

• Facilitates sharing/usage of NN models across 
different frameworks

• Weights can be add at whatever analysis stage

GEN SIM RECO NTUPLE

https://github.com/cms-sw/cmssw
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Summary and conclusions

• Modelling uncertainties are already a major source of uncertainty at LHC 

• Computational cost is a bottleneck (many alternative samples to be produced) 

• The current conditions will not be sustainable at HL-LHC 

• ML-assisted reweighting of Monte Carlo samples (DCTR) solves the bottleneck 

• First use of DCTR for a real CMS analysis application 

• Reweighted uncertainties model with high precision traditional approach 

• Many other applications in any physics field can be investigated 

• MC tuning at detector level 

• PYTHIA vs Herwig reweighting 

• Unbinned and full phase space unfolding 

• …



Thank you



Backup
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Powheg  parameter in top pair productionhdamp

Heavy quark process of Powheg (arxiv1002.2581): 

• Nominal CMS:  

• 2 CMS variations: 

•       

hdamp = 1.379 ⋅ mt

hdown
damp = 0.8739 ⋅ mt hup

damp = 2.305 ⋅ mt

For computation reasons, variation samples produced 
with less than half the events of the nominal sample  
Decrease precision of analyses 

 Reweighting: same number of events in nominal and 
variations samples

→

→

CMS-PAS-MLG-24-001

https://arxiv.org/abs/1002.2581
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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 reweighting resultshdamp
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All results from CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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 reweighting after the showerhdamp

• The model is trained at parton level using LHE information 

• The reweighting works well also after showering the events (hvq interfaced with PS generator Pythia)
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Njets

∑
i=0

pi
T

With pT > 30 GeV, |η | < 2.4

All results from CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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 parameter reweighting resultsrb

• Reweighting closure within 2% up to xb < 1

• Test sample: 500k events generated for each  value, 
orthogonal to trained and validation samples

rb

• Goodness of reweighting checked with a 
reweighting closure:  

• Comparison between reweighted and target 
sample 

• Target: sample generated with  

• Reweighted sample: sample generated with 
 and reweighted to  

using a test sample

rb = 1.056

rb = 0.855 rb = 1.056
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 parameter reweighting resultsrb
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MiNNLO reweighting
The method works well also on observable we didn’t train on

All results from CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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MiNNLO reweighting: top observables

All results from CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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DCTR compared to 2D bin reweighting

Comparing DCTR to 2D bin reweighting 

• The 2D reweighting is done with  and  of  system 

• Check the goodness of the two reweightings on 

pT η tt̄

pT(tt̄ )

• Both methods work well on variables used in the 
2D reweighting

CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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DCTR compared to 2D bin reweighting

Comparing DCTR to 2D bin reweighting 

• The 2D reweighting is done with  and  of  system 

• Check the goodness of the two reweightings on 

pT η tt̄

pT(t)

• 2D reweighting improves  but still large 
deviations respect target 

• DCTR uses the whole phase space for reweighting  

It works well on any projections

pT(t)

→

CMS-PAS-MLG-24-001

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/MLG-24-001/
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Example of impact of MC modelling uncertainty in analyses
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CMS (13 TeV)-1138 fb
Normalized, parton level CMS-TOP-20-006, arXiv:2402.08486

https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-20-006/
https://arxiv.org/abs/2402.08486
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Dealing with negative Event weights

yi: true label of each event (between 0 or 1 according to which class it belongs to) 

f(xi): predicted probability (between 0,1) 

: MC event weightwMC
i

LBCE(f) = −
1
N

N

∑
i

wMC
i (yi ⋅ logf(xi) + (1 − yi) ⋅ log(1 − f(xi))

LMSE(f) =
1
N

N

∑
i

wMC
i (f(xi) − yi)2
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Technical information: PFN architecture

• Technical details: 

• Latent space dimension: l=128 

• Activation func: ReLu 

• Classification output func:  softmax 

• Loss func: crossentropy  loss 

• Optimizer: Adam*** 

• Learning rate: 0.01  

• Early stopping with patience 10 ****

**

*** to update the NN parameters (weights and biases), to 
minimise the cross-entropy loss function for 100 epochs. 
****To prevent overfitting

All models are implemented in Keras with the Tensorflow backend

This architecture has been already 
optimised by the authors for particle 

physics.


