Soft-gluon effective coupling perturbative results and the large n_F limit to all orders Daniel de Florian UNSAM Argentina

Instituto de Ciencias Físicas ICIFI-ECYT_UNSAM

Soft-gluon effective coupling Daniel de Florian

- S.Catani, D.deF., S.Devoto, M.Grazzini and J.Mazzitelli

Instituto de Ciencias Físicas ICIFI-ECYT_UNSAM

Soft-gluon effective coupling Daniel de Florian

Stefano Catani

Soft-gluon effective coupling introduction

NNLO and beyond

 \checkmark Large n_F limit to all orders

Soft-gluon effective coupling Daniel de Florian

Hard scattering observables sensitive to soft-gluon effects

- •originate from boundaries of phase space
- real-radiation strongly suppressed : unbalance virtual-radiation
- •generate large logarithmic corrections $\alpha_{c}^{n}L^{2n}$
 - low transverse momentum $\log \frac{q_T}{O}$
 - threshold $\log\left(1-\frac{Q^2}{\hat{\varsigma}}\right)$

Need to be resumed to some loga the convergence of the perturbative

One way to resum large logs (and more)

collinear branching driven by splitting function

$$dw_i^{DL} = \frac{\alpha_{\rm S}}{2\pi} P_{ii}(z) \, dz \frac{d\theta^2}{\theta^2} \simeq C_i \frac{\alpha_{\rm S}}{\pi} \frac{dz}{1-z} \frac{dq_T^2}{q_T^2}$$

$$P_{ii}\left(\alpha_{\rm S};z\right) = \frac{1}{1-z}A_i\left(\alpha_{\rm S}\right) + \dots \qquad \begin{array}{c} {\rm so} \\ {\rm sp} \\ {\rm functions} \end{array}$$

Intensity of soft-gluon radiation

soft and collinear emission (DL accuracy)

oft limit of litting nction

cusp anomalous dimension

at LO given by
$$C_i \frac{\alpha_S}{\pi}$$
 $C_i = C_F(q)$,

One way to resum large logs (and more)

collinear branching driven by splitting function

$$dw_i^{DL} = \frac{\alpha_{\rm S}}{2\pi} P_{ii}(z) \, dz \frac{d\theta^2}{\theta^2} \simeq C_i \frac{\alpha_{\rm S}}{\pi} \frac{dz}{1-z} \frac{dq_T^2}{q_T^2}$$

$$P_{ii}\left(\alpha_{\rm S};z\right) = \frac{1}{1-z}A_i\left(\alpha_{\rm S}\right) + \dots \qquad \begin{array}{c} {\rm so}\\ {\rm sp}\\ {\rm full} \end{array}$$

Intensity of soft-gluon radiation at LO given by $C_i \frac{\alpha_{\rm S}}{---}$

The resummation of soft-collinear terms at LL achieved by coupling evaluated at q_T (resum)

$$C_i \frac{\alpha_{\rm S}}{\pi} \to C_i \frac{\alpha_{\rm S} \left(q_T^2\right)}{\pi}$$

soft and collinear emission (DL accuracy)

oft limit of litting nction

cusp anomalous dimension

$$C_i = C_F(q), C_A(g)$$

ppp

The resummation of soft-collinear terms at NLL achieved by (MC@NLL)

 $K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{5}{9}n_F$

soft effective coupling at NLL

Soft-gluon effective coupling Daniel de Florian

- Dp to 2-loops, the soft-gluon effective coupling is still given by the cusp anomalous dimension
 - $A_i^{(1)} = C_i, \quad A_i^{(2)} =$
 - Higher orders of cusp knowr
- But, cusp=soft coupling beyond 2-loops?

Soft-gluon effective coupling

$$= \frac{1}{2} C_i \left[C_A \left(\frac{67}{18} - \frac{1}{6} \pi^2 \right) - \frac{5}{9} N_f \right] \equiv \frac{1}{2} C_i K$$

n $A_i^{(3)} A_i^{(4)}$

$$w\left(k;\epsilon\right) = \sum_{n=1}^{\infty} \int \left(\prod_{i=1}^{n} \left[dk_{i}\right]\right) \tilde{M}_{s}^{2}\left(k_{1},\ldots,k_{n}\right) (2\pi)^{d} \delta^{(d)}\left(k-\sum_{i}k_{i}\right) \qquad \begin{array}{c} k_{1} & k_{2} \\ k_{1} & k_{2} \\ k_{2} & \cdots \\ k_{n} \\ k_{n} & k_{n}$$

all-order definition in terms of a prob. density (web) Banfi, El-Menoufi, Monni (2018)

 -2ϵ

$$w\left(k;\epsilon\right) = \sum_{n=1}^{\infty} \int \left(\prod_{i=1}^{n} \left[dk_{i}\right]\right) \tilde{M}_{s}^{2}\left(k_{1},\ldots,k_{n}\right) (k_{1},\ldots,k_{n}) (k_{1},\ldots,k$$

depends only on k_T and $m_T^2 = k_T^2 + k^2$ and

•given the two variables, propose two definitions for soft-coupling

Banfi, El-Menoufi, Monni (2018) suitable for q_T -related observables

$$\widetilde{\mathscr{A}}_{0,i}\left(\alpha_{\mathrm{S}}\left(\mu^{2}\right);\epsilon\right) = \frac{1}{2}\mu^{2}\int_{0}^{\infty}dm_{T}^{2}dk_{T}^{2}\delta\left(\mu^{2}-m_{T}^{2}\right)$$

all-order definition in terms of a prob. density (web) Banfi, El-Menoufi, Monni (2018)

$\widetilde{\mathscr{A}}_{T,i}\left(\alpha_{\mathrm{S}}\left(\mu^{2}\right);\epsilon\right) = \frac{1}{2}\mu^{2} \int_{0}^{\infty} dm_{T}^{2} dk_{T}^{2} \delta\left(\mu^{2} - k_{T}^{2}\right) w_{i}(k;\epsilon) \qquad \text{defined at fixed value of } k_{T}$

w_T^2 $w_i(k;\epsilon)$ defined at fixed value of m_T

suitable for threshold-related observables

all-order definition in terms of a prob. density (web) Banfi, El-Menoufi, Monni (2018)

$$w\left(k;\epsilon\right) = \sum_{n=1}^{\infty} \int \left(\prod_{i=1}^{n} \left[dk_{i}\right]\right) \tilde{M}_{s}^{2}\left(k_{1},\ldots,k_{n}\right) (k_{1},\ldots,k_{n}) (k_{1},\ldots,k$$

depends only on k_T and $m_T^2 = k_T^2 + k^2$ and

•given the two variables, propose two definitions for soft-coupling

Banfi, El-Menoufi, Monni (2018) suitable for q_T -related observables

$$\widetilde{\mathscr{A}}_{0,i}\left(\alpha_{\mathrm{S}}\left(\mu^{2}\right);\epsilon\right) = \frac{1}{2}\mu^{2}\int_{0}^{\infty}dm_{T}^{2}dk_{T}^{2}\delta\left(\mu^{2}-m_{T}^{2}\right)$$

measures intensity of soft emissio

Soft-gluon effective coupling

$\widetilde{\mathscr{A}}_{T,i}\left(\alpha_{\mathrm{S}}\left(\mu^{2}\right);\epsilon\right) = \frac{1}{2}\mu^{2} \int_{0}^{\infty} dm_{T}^{2} dk_{T}^{2} \delta\left(\mu^{2} - k_{T}^{2}\right) w_{i}(k;\epsilon) \qquad \text{defined at fixed value of } k_{T}$

 w_T^2) $w_i(k;\epsilon)$ defined at fixed value of m_T

suitable for threshold-related observables

on at scale
$$\mu^2$$

can take limit $\epsilon \to 0$ to obtain the physical couplings: keep D-dimensional

•at lowest order both couplings agree to all orders in ϵ

can take limit $\epsilon \to 0$ to obtain the physical couplings: keep D-dimensional 66660 • at lowest order both couplings agree to all orders in ϵ we computed both couplings at α_s^2 (all orders in ϵ)

$$\widetilde{\mathscr{A}}_{T,i}^{(2)}(\epsilon) = A_i^{(2)} + \epsilon C_i \left[C_A \left(\frac{101}{27} - \frac{11\pi^2}{144} - \frac{7\zeta_3}{2} \right) + n_F \left(\frac{\pi^2}{72} - \frac{14}{27} \right) \right] \\ + \epsilon^2 C_i \left[C_A \left(\frac{607}{81} - \frac{67\pi^2}{216} - \frac{77\zeta_3}{36} - \frac{7\pi^4}{120} \right) + n_F \left(\frac{5\pi^2}{108} - \frac{82}{81} + \frac{7\zeta_3}{18} \right) \right] + \mathcal{O}\left(\epsilon^3\right)$$

$$\widetilde{\mathcal{A}}_{0,i}^{(2)}(\epsilon) = A_i^{(2)} + \epsilon C_i \left[C_A \left(\frac{101}{27} - \frac{55\pi^2}{144} - \frac{7\zeta_3}{2} \right) + n_F \left(\frac{5\pi^2}{72} - \frac{14}{27} \right) \right] \\ + \epsilon^2 C_i \left[C_A \left(\frac{607}{81} - \frac{67\pi^2}{72} - \frac{143\zeta_3}{36} - \frac{\pi^4}{36} \right) + n_F \left(\frac{5\pi^2}{36} - \frac{82}{81} + \frac{13\zeta_3}{18} \right) \right] + \mathcal{O}\left(\epsilon^3\right)$$

agree with cusp anomalo • ϵ terms different = effect at the next order

Instituto de Ciencias Físicas ICIFI-ECYT_UNSAM

Soft-gluon effective coupling

Daniel de Florian

Why interested in D-dimensional expression?

$$\widetilde{\mathscr{A}}_{T,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=\widetilde{\mathscr{A}}_{0,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=A_{i}\left(\alpha_{\mathrm{S}}\right)$$

• 'D-dimensional' $\beta = 0$ in QCD $\frac{d \ln \alpha_s(\mu^2)}{d \ln \mu^2} = -\epsilon + \frac{1}{2}$

conformal point $\epsilon = \beta(\alpha_s)$

$$\beta(\alpha_s(\mu^2)) \qquad \beta = -(\beta_0 \alpha_s + \beta_1 \alpha_s^2 + \dots)$$

Why interested in D-dimensional expression?

$$\widetilde{\mathscr{A}}_{T,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=\widetilde{\mathscr{A}}_{0,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=A_{i}\left(\alpha_{\mathrm{S}}\right)$$

• 'D-dimensional'
$$\beta = 0$$

in QCD $\frac{d \ln \alpha_s(\mu^2)}{d \ln \mu^2} = -\epsilon + \beta(\alpha_s(\mu^2))$ $\beta = -(\beta_0 \alpha_s + \beta_1 \alpha_s^2 + ...)$

An explicit third order computation would demand evaluation of

- triple soft current (Born)
- double soft current (one loop)
- single soft current (two loops)

Why interested in D-dimensional expression?

$$\widetilde{\mathscr{A}}_{T,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=\widetilde{\mathscr{A}}_{0,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=A_{i}\left(\alpha_{\mathrm{S}}\right)$$

• 'D-dimensional'
$$\beta = 0$$

in QCD $\frac{d \ln \alpha_s(\mu^2)}{d \ln \mu^2} = -\epsilon + \beta(\alpha_s(\mu^2))$ $\beta = -(\beta_0 \alpha_s + \beta_1 \alpha_s^2 + ...)$

An explicit third order computation would demand evaluation of

- triple soft current (Born)
- double soft current (one loop)
- single soft current (two loops)

Expanding conformal equation to third order one directly obtains

$$\mathscr{A}_{i}^{(3)} = A_{i}^{(3)} - \left(\beta_{0}\pi\right)^{2} \widetilde{\mathscr{A}}_{i}^{(1;2)} + \left(\beta_{0}\pi\right) \widetilde{\mathscr{A}}_{i}^{(2;1)}$$

$$\mathscr{A}_{T,i}^{(3)} = A_i^{(3)} + C_i \left(\beta_0 \pi\right)^2 \frac{\pi^2}{12} + C_i \left(\beta_0 \pi\right) \left[C_A \left(\frac{101}{27} - \frac{11\pi^2}{144} - \frac{7\zeta_3}{2} \right) + n_F \left(\frac{\pi^2}{72} - \frac{14\pi^2}{27} - \frac{14\pi^2}{27} \right) \right]$$

Agrees with previous result and 3^{rd} order coefficient for q_T resummation Banfi, El-Menoufi, Monni (2018) Becher, Neubert (2011)

$$\overset{\bullet}{\text{Threshold}}_{(\text{new})} \qquad \mathscr{A}_{0,i}^{(3)} = A_i^{(3)} + C_i \left(\beta_0 \pi\right)^2 \frac{\pi^2}{12} + C_i \left(\beta_0 \pi\right) \left[C_A \left(\frac{101}{27} - \frac{55\pi^2}{144} - \frac{7\zeta_3}{2} \right) + n_F \left(\frac{5\pi^2}{72} - \frac{\pi^2}{2} \right) \right]$$

Also computed for threshold at 4th order

 q_T

Explicit check for n_F leading terms to all orders h_F terms can appear from:

web: Both can be rearranged as geometric series (keep only n_F in beta)

Conformal relation

(renormalized) bubble insertions

Soft-gluon effective coupling Daniel de Florian

Explicit check for n_F leading terms to all orders h_F terms can appear from:

web: Both can be rearranged as geometric series (keep only n_F in beta)

find all-order expression and sum the series \checkmark Beneke, Braun (1995) $=A_{i} = C_{i} \frac{\alpha_{\rm S}}{\pi} \frac{\Gamma(4 + 2\beta_{0}\alpha_{\rm S})}{6\Gamma(1 - \beta_{0}\alpha_{\rm S})\Gamma^{2}(2 + \beta_{0}\alpha_{\rm S})\Gamma(1 + \beta_{0}\alpha_{\rm S})}$

$$\widetilde{\mathscr{A}}_{T,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta_{0}^{(n_{F})}\alpha_{\mathrm{S}}\right)=\widetilde{\mathscr{A}}_{0,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta_{0}^{(n_{F})}\alpha_{\mathrm{S}}\right)$$

Conformal relation

(renormalized) bubble insertions

- N³LO soft-coupling for threshold related observables

Conformal relation (all orders $\widetilde{\mathscr{A}}_{T,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=\widetilde{\mathscr{A}}$

 \mathbf{P} Checked to all orders in large n_F limit coupling is known

Conclusions

5)
$$\tilde{\mathcal{A}}_{0,i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=A_{i}\left(\alpha_{\mathrm{S}}\right)$$

Towards improving the precision of PS : still need to account for soft wide-angle and collinear radiation but soft-collinear effective

Instituto de Ciencias Físicas ICIFI-ECYT_UNSAM

Instituto de Ciencias Físicas ICIFI-ECYT_UNSAM

Soft-gluon effective coupling Daniel de Florian

Full Soft-collinear radiation from hard partons

- DY $q\bar{q}$ Simpler for $c\overline{c} \to F$
- Processes involving several hard partons more complicated (MC) need to account for soft wide-angle emission and collinear radiation
- But soft coupling \mathscr{A}_i not affected •intensity of soft-collinear radiation from parton i
 - •exactly known to 4th order (for threshold related)
- All information for (threshold) resummation is contained in the d-dimensional version of the soft-coupling (work in progress)

in general
$$\widetilde{\mathcal{A}}_{\mathcal{F},i}(\alpha_{\mathrm{S}}(\mu^{2});\epsilon) = \frac{1}{2} \mu^{2} \int_{0}^{\infty} dm_{T}^{2} dk_{T}^{2} \,\delta\left(\mu^{2} - \frac{k_{T}^{2}}{\mathcal{F}(k_{T}^{2}/m_{T}^{2})}\right) w_{i}(k;\epsilon)$$

measures intensity of soft emission at scale $\mu^2 = k_T^2 / \mathcal{F}(k_T^2/m_T^2)$

$$\tilde{\mathscr{A}}_{\mathscr{F}_{1},i}\left(\alpha_{\mathrm{S}}\left(\mu^{2}\right);\epsilon\right) - \widetilde{\mathscr{A}}_{\mathscr{F}_{2},i}\left(\alpha_{\mathrm{S}}\left(\mu^{2}\right);\epsilon\right) = \sum_{n=2}^{+\infty} \frac{1}{\pi^{n}} \int_{0}^{1} dt \left[\alpha_{\mathrm{S}}^{n}\left(\mu^{2}\mathscr{F}_{1}(t)\right) - \alpha_{\mathrm{S}}^{n}\left(\mu^{2}\mathscr{F}_{2}(t)\right)\right] \widehat{w}_{T,i}^{(n)}(t;\epsilon)$$

For (D-dimensional) $\beta = 0$ all soft-couplings agree (with cusp)

$$\widetilde{\mathscr{A}}_{\mathscr{F},i}\left(\alpha_{\mathrm{S}};\epsilon=\beta\left(\alpha_{\mathrm{S}}\right)\right)=A_{i}\left(\alpha_{\mathrm{S}}\right)$$

The difference between two definitions is given order by order $t = k_T^2/m_T^2$

