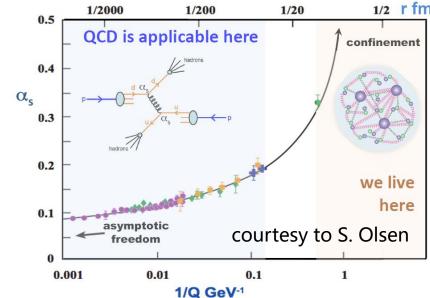
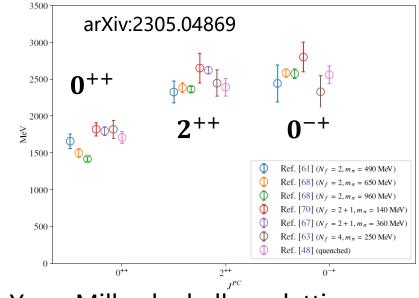
Discovery of a Glueball-like particle X(2370) @ **Hestime**

Beijiang Liu (on behalf of BESIII)

Institute of High Energy Physics, Chinese Academy of Sciences

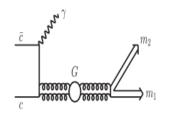



ichep2024.orc

42nd International Conference on High Energy Physics(ICHEP2024) Prague, 18-24 July 2024

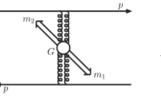
Glueballs

- Glueballs are the most direct prediction of QCD
 - Color singlets emerge as a consequence of the gluon selfinteractions
- Essential for understanding of confinement and mass dynamical generation
 - Gluon degree of freedom in the low energy
- Theoretical predictions from lattice QCD and QCDinspired models mostly consistent
 - Light-mass glueballs: $J^{PC} = 0^{++}, 2^{++}, 0^{-+}$

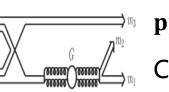

Yang-Mills glueballs on lattice (quenched and unquenched results)

Glueball hunting for over 40 years

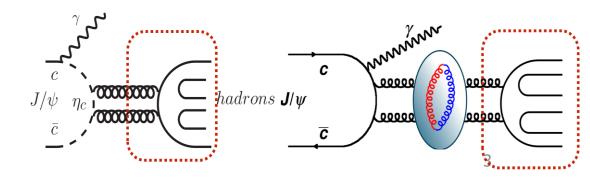
- Supernumerary states that do not fit into $q\overline{q}$ multiplets
 - A priori, mixed with nearby $q\overline{q}$
 - Assignment of some $q \overline{q}$ multiplets difficult
- Production: Strongly produced in gluonrich processes
- Decay: gluon is flavor-blind
 - No dominate decay mode
 - SU(3)_{flavor} symmetry expected
 - No rigorous predictions
 - Could be analogy to OZI suppressed decays of charmonium, as they all decay via gluons [PLB 380 189(1996), Commu. Theor. Phys. 24.373(1995)]



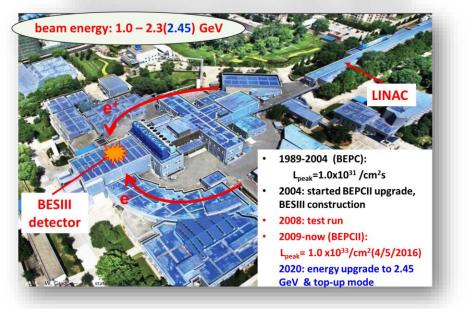
[Phys. Rept. 454 1]

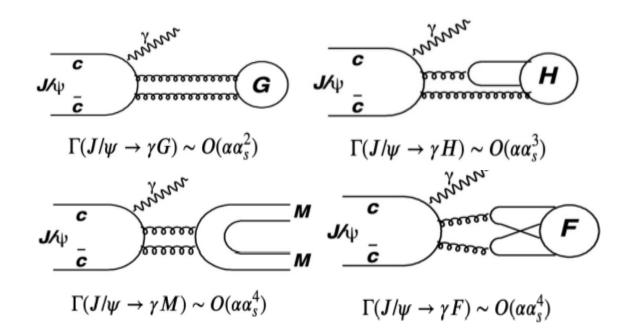

Charmonium decays:

BESIII, MRKIII...


pp double-Pomeron exchange:

WA102, GAMS...




$p\overline{p}$ annihilation:

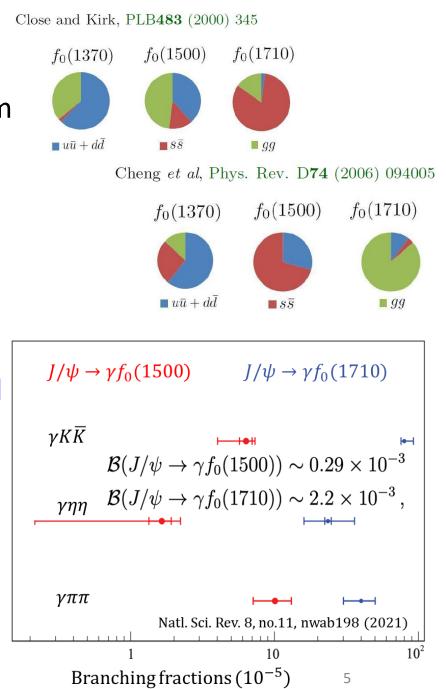
Crystal barrel, OBELIX...

Beijing Electron Positron Collider (BEPCII)

Charmonium decays provide an ideal lab for glueballs

- Gluon-rich process
- Well defined initial and final states
 - Kinematic constraints
 - Isospin and J^{PC} filters
- Clean high statistics data samples: $10 \times 10^9 \text{ J/}\psi$ and 2.7 $\times 10^9 \psi'$ @ BESIII
 - High cross sections of $e^+e^- \to J/\psi, ~\psi'$
 - Low background

Scalar glueball candidate


- Supernumerary scalars suggest additional degrees of freedom
 - However, mixing scenarios are controversial
- Measured $B(J/\psi \rightarrow \gamma f_0(1710))$ is **x10 larger** than $f_0(1500)$

BESIII [PRD 87 092009, PRD 92 052003, PRD 98 072003]

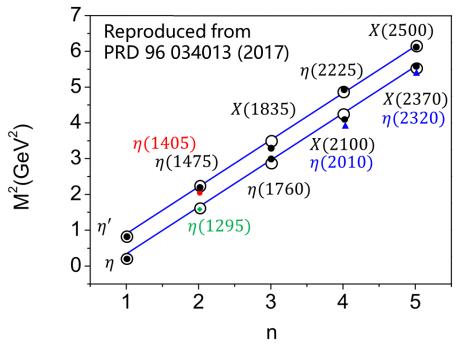
- LQCD: $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$ [PRL 110, 091601(2013)] > BESIII: $f_0(1710)$ largely overlays with the scalar glueball
- Identification of scalar glueball with coupled-channel analyses based on BESIII data

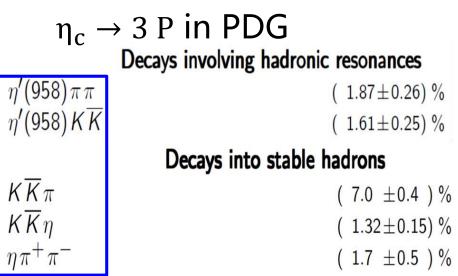
[PLB 816, 136227 (2021), EPJC 82, 80 (2022), PLB 826, 136906 (2022)]

• Further more, suppression of $f_0(1710) \rightarrow \eta \eta'$ supports $f_0(1710)$ has a large overlap with glueball BESIII [PRD 106 072012(2022)]

Indications of tensor glueball

exchange from WA102@CERN


6


still desired to study more decay modes

More complicated due to the large number of tensor states

Where is the 0⁻⁺ glueball

- Pseudoscalar sector, a promising window
 - Only $\eta,\,\eta'$ (& radial excitations) from quark model
- Mass
 - LQCD: 0⁻⁺ glueball (2.3~2.6 GeV)
 - The first glueball candidate: $\iota(1440)$ (Split into $\eta(1405)$ and $\eta(1475)$)
 - Mass incompatible with LQCD
 - Little experimental information above 2 GeV
- Production
 - LQCD: $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$, at the same level as 0⁻⁺ mesons [PRD.100.054511(2019)]
- Decays
 - Possible guidance: OZI suppressed decays of η_c
 - 3 pseudoscalar final state is a good place to look for $(0^{-+} \rightarrow 2P \text{ is forbidden})$

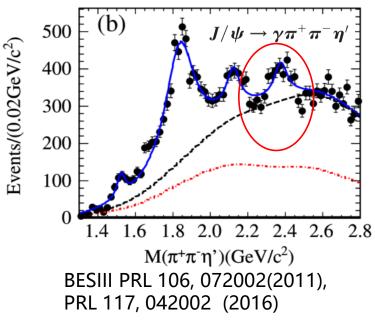
 $|_1$

2

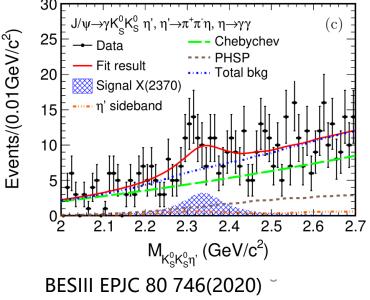
Γ₃₄

Γ₃₅

36

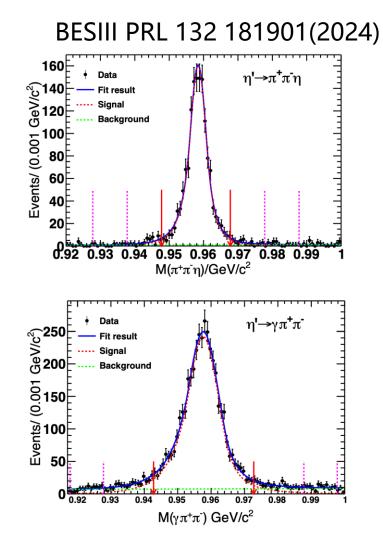

- No dominant decay
- Flavor symmetric⁷

Observation of X(2370)

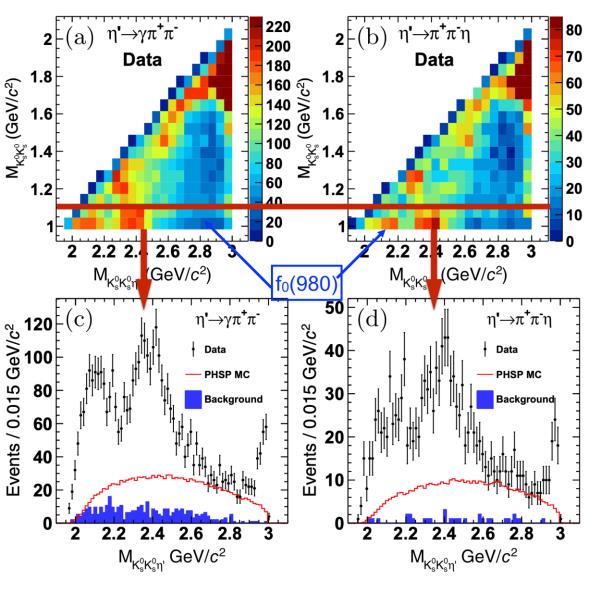

- Discovered by BESIII in $J/\psi \to \gamma \eta' \pi \pi$ in 2011
- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi \pi$, $\gamma \eta' KK$
 - Not seen in $J/\psi \rightarrow \gamma \eta' \eta \eta$ [BESIII PRD 103 012009 (2021)], $J/\psi \rightarrow \gamma \gamma \varphi$ [BESIII arXiv: 2401.00918]. Upper limits of BF are well consistent with predictions of 0⁻⁺glueball
- A good candidate for 0⁻⁺glueball
- Mass is consistent with LQCD predictions
- Produced in the gluon-rich J/ψ radiative decays
- Observed in both $\eta'\pi\pi$ and $\,\eta'KK$

→ Determination of its spin-parity is crucial

 $J/\psi\to\gamma\eta'\pi\pi$



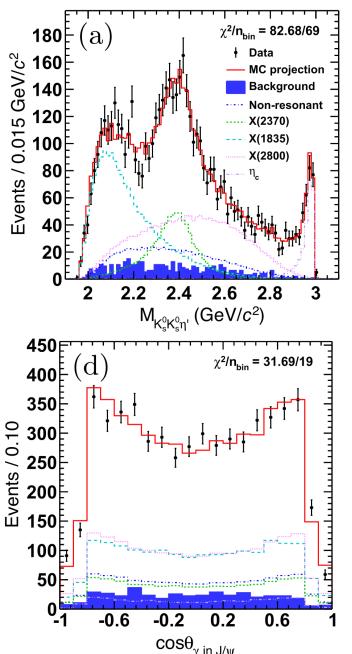
 $J/\psi \rightarrow \gamma \eta' K K$



Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$

- η^\prime reconstructed with $\eta\pi^+\pi^-$ and $\gamma\pi^+\pi^-$
- K^0_S reconstructed with $\pi^+\pi^-$
- Almost background free
 - Negligible mis-combination for K_S^0 (<0.1%)
 - No background from $J/\psi \to \pi^0 \eta' K^0_S K^0_S~~ \text{or}~ \eta' K^0_S K^0_S$
 - Forbidden by exchange symmetry and CP conservation
 - No peaking background
 - Little Non- η' backgrounds estimated from η' sidebands
 - + 1.8% for $\eta' \rightarrow \eta \pi^+ \pi^-$, 6.8% for $\eta' \rightarrow \gamma \pi^+ \pi^-$

Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$ BESIII PRL 132 181901(2024)



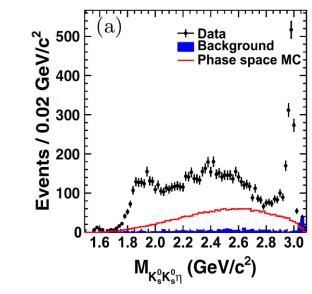
- A clear connection between the $f_0(980)$ and $X(2370)/\eta_c$
 - $f_0(980)$ selection with $M(K_S^0K_S^0) < 1.1 \text{GeV}/c^2$
 - Clear signals of the X(2370) and η_{c}

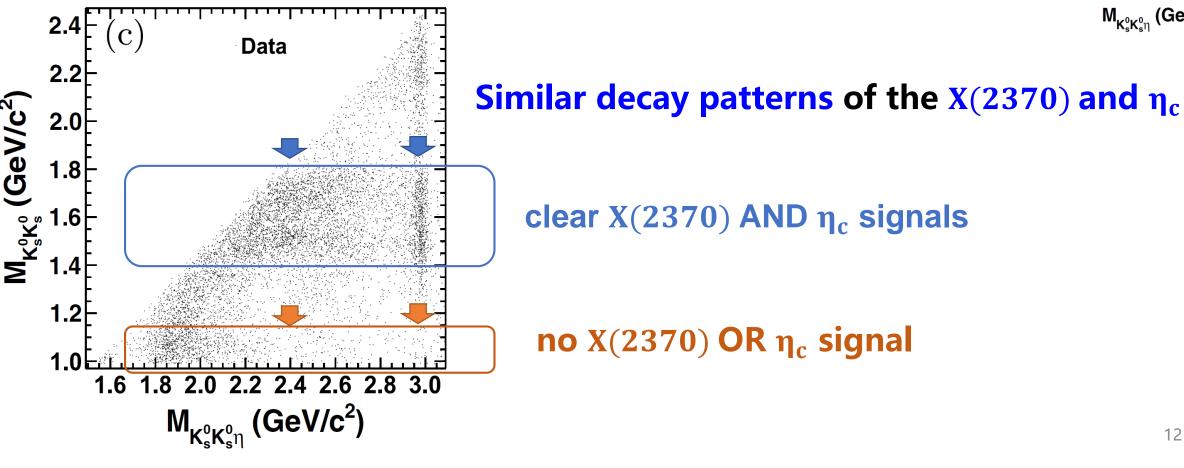
• Amplitude analysis

• Quasi two-body decay amplitudes in the sequential decay processes $J/\psi \rightarrow \gamma X, X \rightarrow Y\eta', Y \rightarrow K_S^0 K_S^0$ and $J/\psi \rightarrow \gamma X, X \rightarrow Z K_S^0, Z \rightarrow K_S^0 \eta'$ are constructed using the covariant tensor formalism[Eur. Phys. J. A 16, 537]

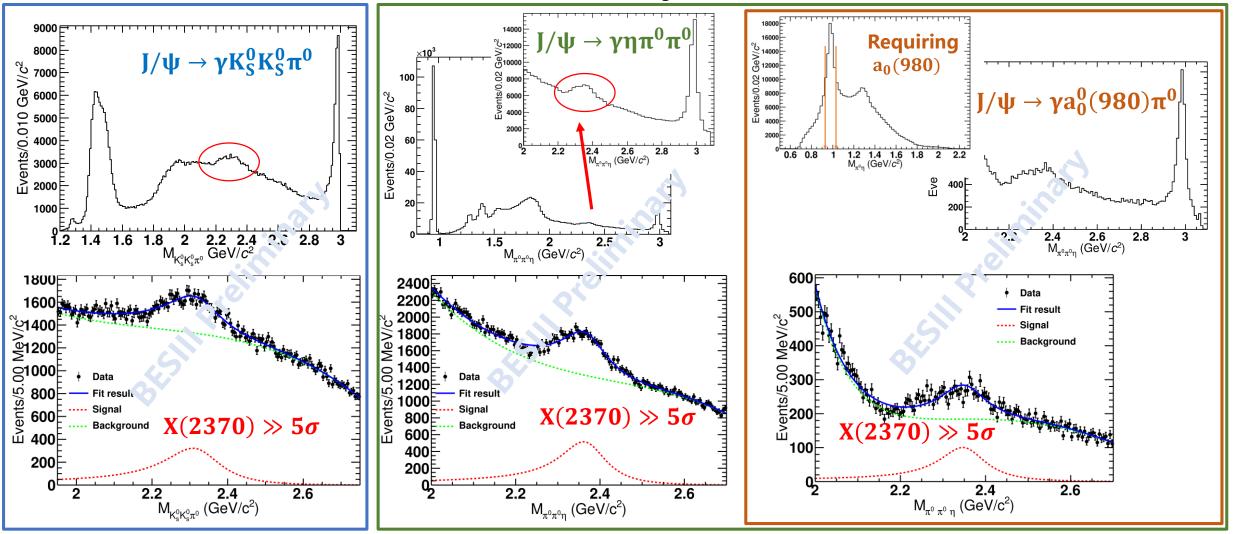
Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$

BESIII PRL 132 181901(2024)


Nominal fit solution


state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0^-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0^-+	$f_0(980)\eta'$	1844	192	22.0σ
X(2800)	0^-+	$f_0(980)\eta'$	2799^{+52}_{-48}	660^{+180}_{-116}	16.4σ
η_c	0-+	$f_0(980)\eta'$	2983.9	32.0	$> 20.0\sigma$
PHSP	0-+	$\eta'(K^0_S K^0_S)_{S-wave}$			9.0σ
		$\eta'(K_S^0K_S^0)_{D-wave}$			16.3σ

- X(2370)'s $J^{PC} = 0^{-+}$ with 9.8 σ
- Product branching fraction: $B(J/\psi \rightarrow \gamma X(2370)B(X(2370) \rightarrow \eta' K_S^0 K_S^0)B(f_0(980) \rightarrow K_S^0 K_S^0)$ $= (1.31 \pm 0.22^{+2.85}_{-0.84}) \times 10^{-5}$


X(2370) seen in J/ $\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ BESIII PRL 115 091803(2015)

Observation of new decay modes of X(2370)

• $X(2370) \rightarrow K_S^0 K_S^0 \pi^0$, * $\eta \pi^0 \pi^0$, $a_0^0 (980) \pi^0$ firstly observed, all accompanied with η_c

* $\eta(2320) \rightarrow \eta\eta\eta, \eta\pi\pi$ [PL B496 145(2000)] could be the current X(2370) at BESIII¹³

Summary

- BESIII has a rich program of light QCD exotic studies
 - 10×10^9 J/ ψ and 2.7 $\times 10^9 \psi'$ on disk
 - Running until ~2030
- X(2370) observed in the gluon-rich J/ ψ radiative decays
 - J^{PC} determined to be 0⁻⁺
 - Mass and production rate consistent with LQCD
 - Decay modes $X(2370) \rightarrow$

η'ππ, η'KK, $K_S^0 K_S^0 \eta$, $K_S^0 K_S^0 \pi^0$, ηπ⁰π⁰, a_0^0 (980)π⁰ observed, in analog to η_c

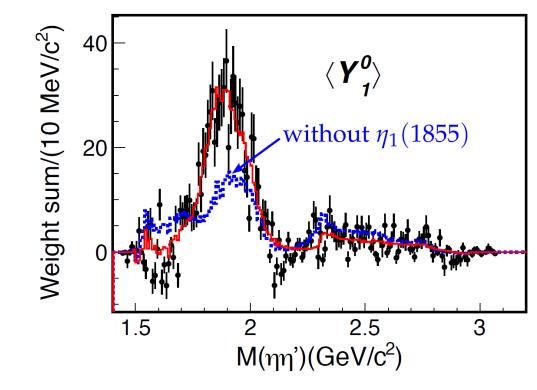
• Further experimental + theoretical efforts essential to improve our understanding of glueballs

Thank you for your attention 14

Consistent with 0⁻⁺ glueball

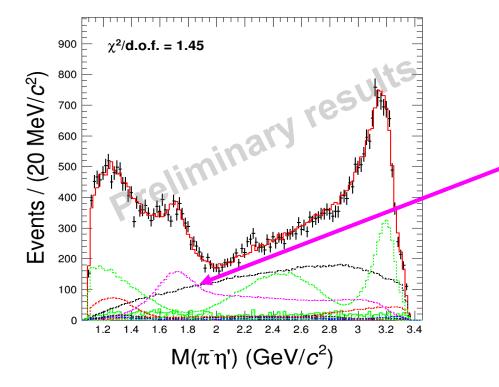
Backup slides

Observation of An Exotic 1^{-+} Isoscalar State $\eta_1(1855)$


PRL 129 192002(2022), PRD 106 072012(2022)

- Unambiguous signature for exotics
 - J^{PC} forbidden for qq: 0⁻⁻, even⁺⁻, odd⁻⁺
- An isoscalar 1⁻⁺ , $\eta_1(1855)$, has been observed in $J/\psi \rightarrow \gamma \eta \eta'$ (>19 σ)

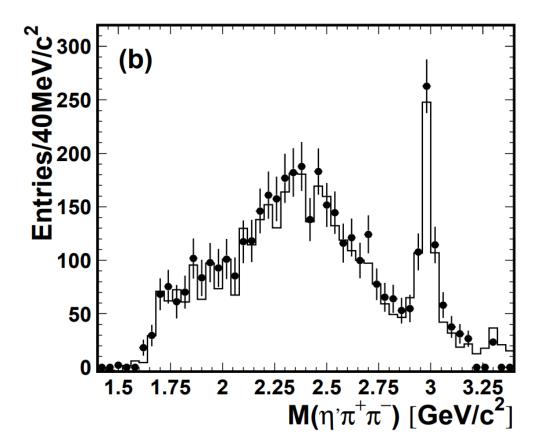
$$\begin{split} \mathsf{M} &= \left(1855 \pm 9^{+6}_{-1}\right) \mathsf{MeV/c^2}, \, \Gamma = \left(188 \pm 18^{+3}_{-8}\right) \mathsf{MeV/c^2} \\ \mathsf{B}(\mathsf{J/\psi} \to \gamma \eta_1(1855) \to \gamma \eta \eta') &= \left(2.70 \pm 0.41^{+0.16}_{-0.35}\right) \times 10^{-6} \end{split}$$


- Mass consistent with hybrid on LQCD
- Inspired many interpretations: Hybrid/KK₁Molecule/Tetraquark?

Opens a new direction to completing the picture of spin-exotics 16

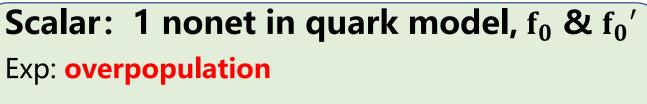
Observation of $\pi_1(1600)$ in $\chi_{c_1} \rightarrow \eta' \pi^+ \pi^-$

2.7 × 10⁹ ψ (3686)@BESIII [preliminary]



- Amplitude analysis of $\chi_{c_1} \rightarrow \eta' \pi^+ \pi^-$ is performed
- $\pi_1(1600)$ observed>10 σ
- with a significant BW phase motion
- $J^{PC} = 1^{-+}$, better than other assignments well over 10σ
 - Evidence of $\pi_1 \rightarrow \eta' \pi$ at CLEO-c is confirmed [PR D84 112009 (2011)]

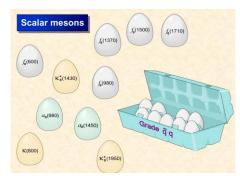
Observations of π_1 and η_1 in charmonium decays provide a new path to study 1^{-+}


•
$$\gamma\gamma \rightarrow \eta'\pi^+\pi^-$$

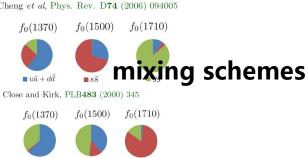
Belle PRD 86 052002(2012)

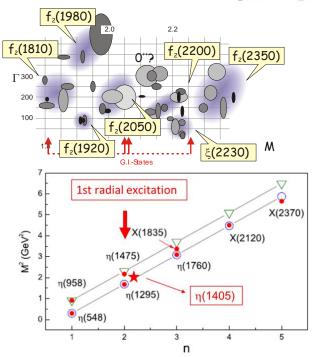
What we have learned before

-- from MarkIII, BES, Crystal barrel, OBELIX, WA102, GAMS, E852, ...



LQCD : ground state 0⁺ glueball ~1.7 GeV; $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$ Tensor: 2 nonets(³P₂, ³F₂), complicated Exp: large uncertainty LQCD: 2⁺⁺(2.3~2.4 GeV); $\Gamma(J/\psi \rightarrow \gamma G_{2+})/\Gamma_{total} = 1.1(2) \times 10^{-2}$


Pseudoscalar: $\eta \& \eta'$, "simple"


```
Exp: lacking of info. above 2 GeV; puzzles η(1295)?
η(1405/1475)?
```

LQCD: $0^{-+}(2.3 \sim 2.6 \text{ GeV})$ $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$

e⁺e⁻ annihilation pp annihilation central exclusive production charge-exchange reactions

Landscape of glueballs has been updated with BESIII' s inputs

Scalar: 1 nonet in quark model, $f_0 \& f_0'$

Exp: overpopulation

LQCD : ground state 0⁺ glueball ~1.7 GeV;

 $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$

Tensor: 2 nonets(³P₂, ³F₂), complicated

Exp: large uncertainty LQCD: $2^{++}(2.3 \sim 2.4 \text{ GeV});$ $\Gamma(J/\psi \rightarrow \gamma G_{2+})/\Gamma_{total} = 1.1(2) \times 10^{-2}$

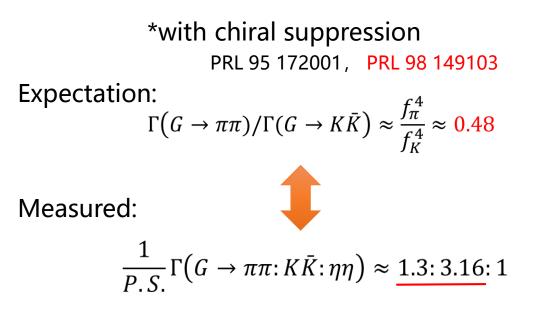
Pseudoscalar: $\eta \& \eta'$, "simple"

Exp: lacking of info. above 2 GeV; puzzles η(1295)? η(1405/1475)?

LQCD: $0^{-+}(2.3 \sim 2.6 \text{ GeV})$ $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$ ✓ f₀(1710) is largely overlapped with the scalar glueball, according to its production and decay properties

 Large production rate of f₂(2340) in J/ψ radiative decays

 \checkmark Non-observation of $\eta(1295)$

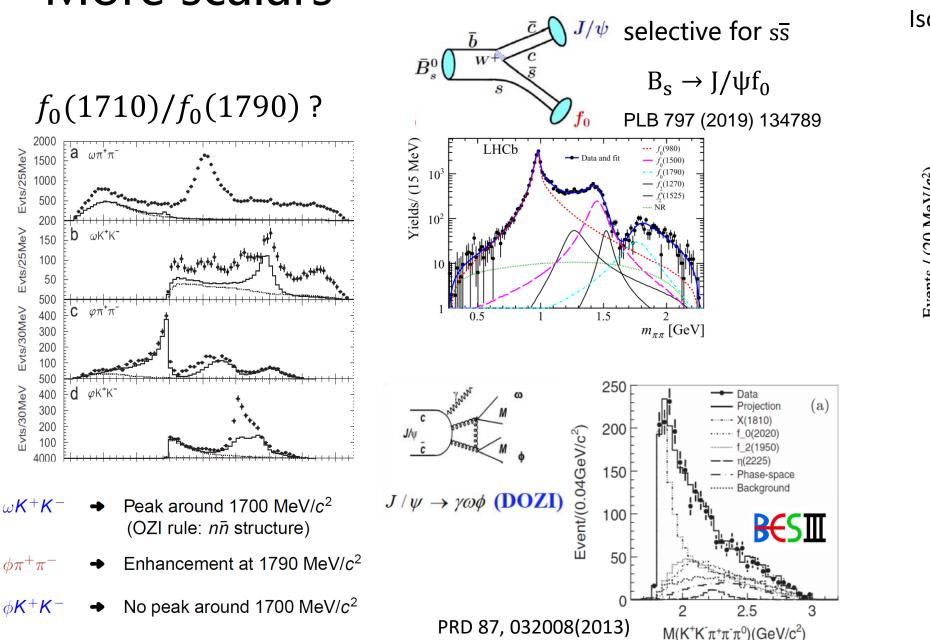

 \checkmark Insights of $\eta(1405/1475)$

✓X(2370): a good candidate with analogy decay pattern as $η_c$

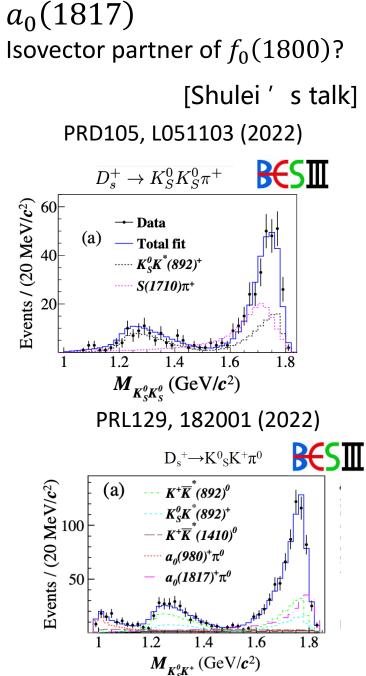
Scalar glueball candidate: decay properties

Flavor-blindness of glueball decays

$$\frac{1}{P.S.}\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$$

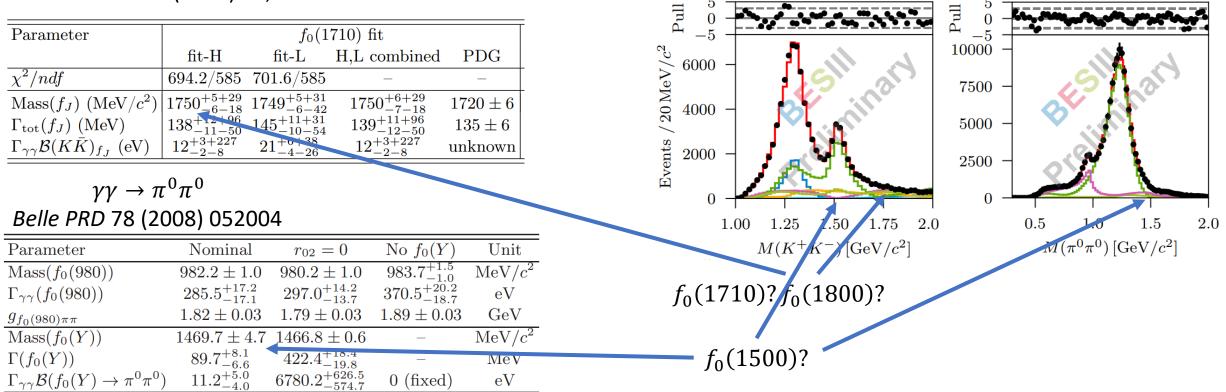

New inputs from $J/\psi \rightarrow \gamma \eta \eta'$ [BESIII PRL 129 192002(2022), PRD 106 072012(2022]

- Significant $f_0(1500)$ $\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$
- Absence of $f_0(1710)$ consistent with PDG $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @90\% \text{ C. L.}$
- Supports to the hypothesis that f₀(1710) overlaps with the ground state scalar glueball
 - Scalar glueball expected to be suppressed $B(G \rightarrow \eta \eta')/B(G \rightarrow \pi \pi) < 0.04$


[PR D 92, 121902; PR D 92, 114035]

Bottom line: Predictions on mixing scheme and decay property of glueball are model-dependent 21

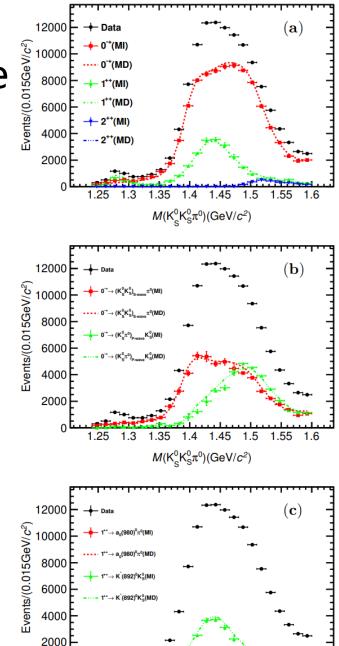
More scalars


 $f_0(1800)$

Two photon couplings

$\gamma \gamma \rightarrow K_S K_S$ Belle PTEP 2013 (2013) 12, 123C01

BESIII preliminary


Proper assignment requires more sophisticated model

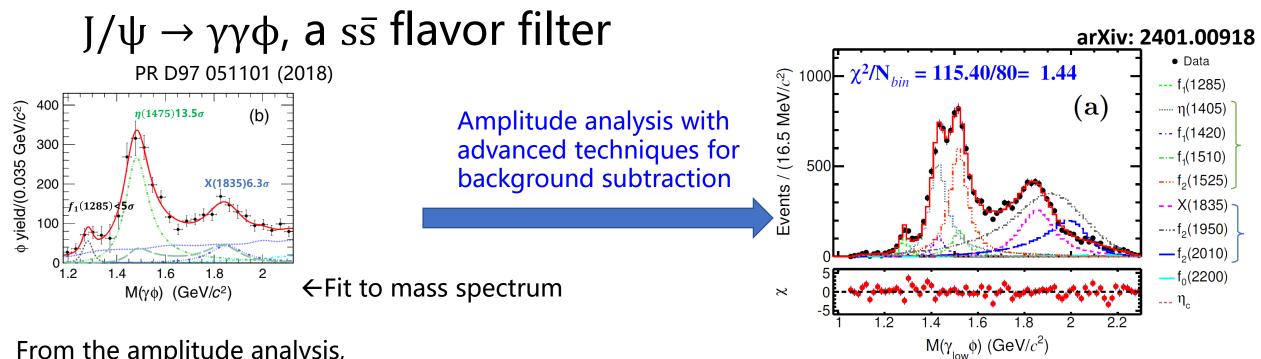
Shed new lights on the $\eta(1405)/\eta(1475)$ puzzle

 $J/\psi \rightarrow \gamma K_S K_S \pi^0$

BESIII JHEP 03 121(2023)

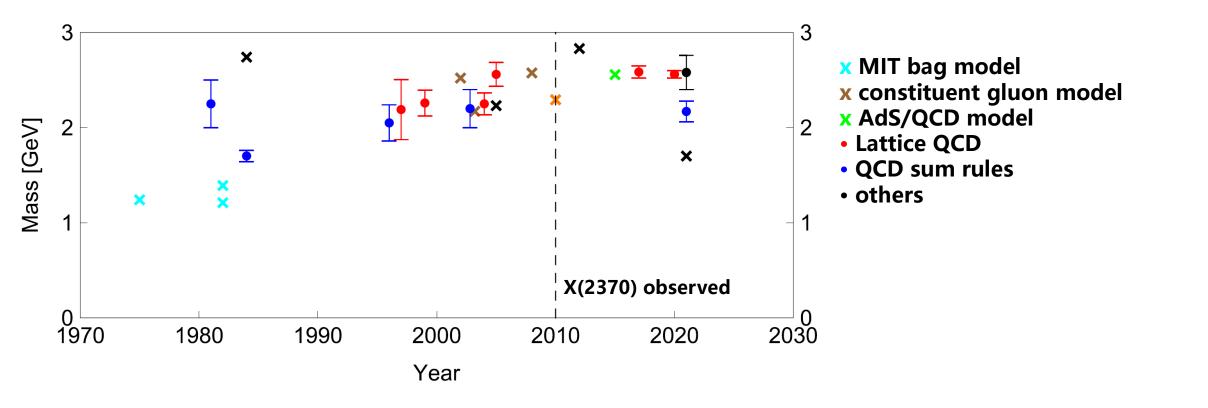
- Mass Independent PWA in bins of M(K_SK_Sπ⁰) to detangle J^{PC} components
 - Valuable inputs to develop models
- Mass Dependent PWA with BW to extract resonances
- Consistency between MI and MD results
- Dominated by 0⁻⁺
 - Two BWs around 1.4 GeV is needed
- $\eta(1405)/\eta(1475)$ poles in coupled-channel analysis
 - PRD 107, L091505 (2023); PRD 109, 014021 (2024)

1.25 1.3

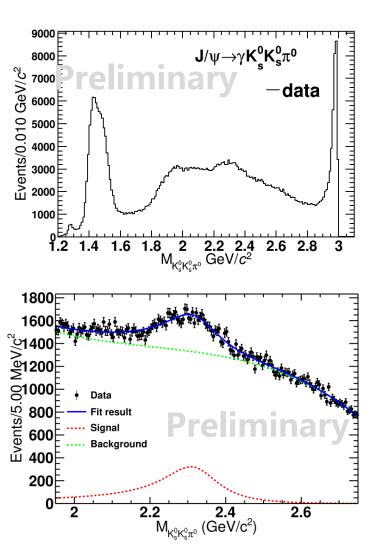

1.35

1.4 1.45

 $M(K_{c}^{0}K_{S}^{0}\pi^{0})(\text{GeV}/c^{2})$

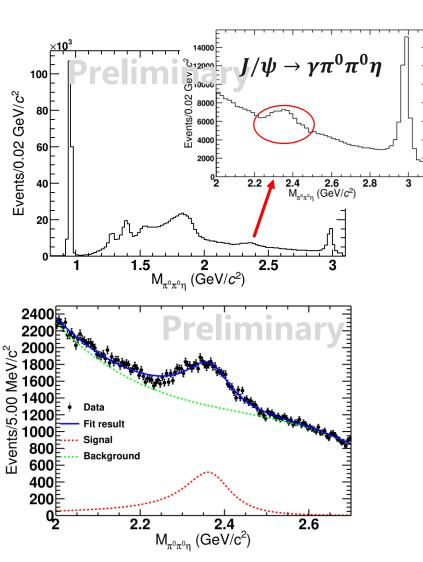

1.5

1.55

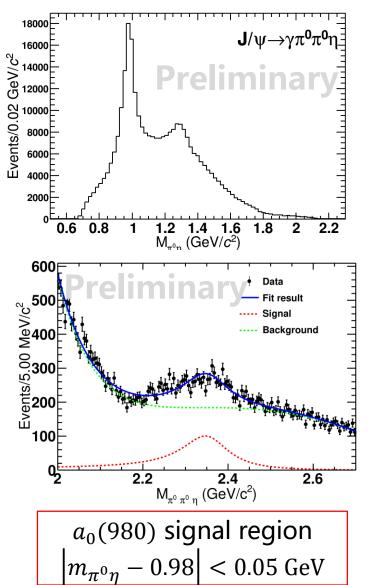


From the amplitude analysis,

- $\eta(1405)$ is observed, while $\eta(1475)$ can not be excluded
- $X(1835) \rightarrow \gamma \phi$ suggests its assignment of η' excitation
- $\eta_c \rightarrow \gamma \phi$ are observed. The very first radiative decay mode of η_c
- Observation of $f_2(1950)$ and $f_0(2200) \rightarrow \gamma \phi$ unfavored their glueball interpretations[PRD 108, 014023, arXiv: 2404.01564]
- No evidence of $X(2370)/\eta_1(1855)$, well consistent with the predictions for glueball/hybrid [PRD 107, 25 114020, NPA 1037, 122683]



Observation of new decay mode: $X(2370) \rightarrow K_S^0 K_S^0 \pi^0$


- Almost background free channel
- 1D mass spectrum fit
 - Signal: efficiency weighted BW × PHSP($J/\psi \rightarrow \gamma X$) factor
 - Background: Chebyshev polynomial
- Statistical significance: >>5σ
- Mass and width (preliminary):
 - $M_{X(2370)} = 2321 \pm 4(stat) \pm 65(syst.) \text{ MeV}/c^2$
 - $\Gamma_{X(2370)} = 182 \pm 16(stat) \pm 59(syst.)$ MeV
- Syst. errors sources:
 - fit range, background shapes, intermediate states, possible interference

Observation of new decay mode: $X(2370) \rightarrow \eta \pi^0 \pi^0$

- Almost background free channel
- 1D mass spectrum fit
 - Signal: efficiency weighted BW × PHSP($J/\psi \rightarrow \gamma X$) factor
 - Background: Chebyshev polynomial
- Statistical significance: $> 5\sigma$
- Mass and width (preliminary):
 - $M_{X(2370)} = 2370 \pm 2(stat) \pm 52(syst.) \text{ MeV}/c^2$
 - $\Gamma_{X(2370)} = 134 \pm 8(stat) \pm 30(syst.)$ MeV
- Syst. errors sources:
 - fit range, background shapes, intermediate states, possible interference

Observation of new decay mode: $X(2370) \rightarrow a_0^0(980)\pi^0$

- Clear $a_0(980)$ signal in $m_{\pi^0\eta}$ spectrum
- 1D mass spectrum fit
 - Signal: efficiency weighted BW × PHSP(J/ $\psi \rightarrow \gamma X$) factor × PHSP($X \rightarrow a_0^0$ (980) π^0) factor
 - Background: Chebyshev polynomial
- Statistical significance: >>5σ
- Mass and width (preliminary):
 - $M_{X(2370)} = 2352 \pm 3(stat) \pm 74(syst.) \text{ MeV}/c^2$
 - $\Gamma_{X(2370)} = 134 \pm 4(stat) \pm 62(syst.) \text{ MeV}$
- Syst. errors sources:
 - fit range, background shapes, possible interference

Amplitude analysis

Amplitude analysis is a key tool of hadron spectroscopy to disentangle contributions from individual resonances and to extract the resonance's spin-parity, mass, width and decay properties

 $Prob(\xi; \alpha) = \frac{\omega(\xi, \alpha)\epsilon(\xi)}{\int d\xi \omega(\xi, \alpha)\epsilon(\xi)} \qquad \xi \text{ (the four-momenta of the final-state particles),} \\ \omega(\xi, \alpha) = \frac{d\sigma}{d\Phi} = |\sum_i A_i|^2 \text{ differential cross section,} \\ \log(\xi, \alpha) = \frac{\delta}{d\Phi} = |\sum_i A_i|^2 \text{ differential cross section,} \\ \varepsilon(\xi) \text{ efficiency} \end{cases}$

For J/ψ radiative decays [Eur. Phys. J. A 16, 537]

$$\begin{aligned} A &= \psi_{\mu}(m_{1})e_{\nu}^{*}(m_{2})A^{\mu\nu} = \psi_{\mu}(m_{1})e_{\nu}^{*}(m_{2})\sum_{i}\Lambda_{i}U_{i}^{\mu\nu} \\ \text{e.g. J/}\psi &\to \gamma 0^{-+}, 0^{-+} \to f_{0}\eta, f_{0}\pi\pi \\ \langle \gamma 0^{-+}|(f_{0}\eta)1\rangle = S_{\mu\nu}B_{1}(Q_{\psi\gamma X})f_{(12)}^{(f_{0})} \end{aligned}$$

$$S_{\mu\nu} = \epsilon_{\mu\nu\alpha\beta} p_{\psi}^{\alpha} q^{\beta}$$

 $B_1(Q_{\psi\gamma X})$ is Blatt-Weisskopf centrifugal barrier for $J/\psi \to \gamma X$

Perform an un-binned loglikelihood fit (fit the data eventwise to high-dimensional distributions using complex weights) to make our model for ω agree with the experimental distribution by varying the α

Golden Decay Modes in 0⁻⁺ Glueball Searches

- PP (2 pseudoscalar mesons) modes are mostly forbidden for 0⁻⁺ mesons
- Typically, PPP (3 pseudoscalar mesons, such as $\pi\pi\eta$, $\pi\pi\eta$ ', KK π) modes are believed as golden decay modes in 0⁻⁺ glueball searches.
 - S wave decays for 0⁻⁺ mesons, no suppression factor, dominant decay modes
 - PPP modes are strongly suppressed in 0⁺⁺, 2⁺⁺ mesons decays spin-parity filter
- VV modes (2 vector mesons, such as $\omega\omega$, $\phi\phi$, $\rho\rho$, K*K*)
 - P wave decays for 0⁻⁺ mesons suppressed decays, especially near mass threshold
 - All J^{PC} mesons allowed, not a spin-parity filter
- Baryon modes
 - All J^{PC} mesons allowed, not a spin-parity filter