

Recent results of Baryon electromagnetic form factors at BESIII Tiantian Lei University of Science and Technology of China (On behalf of BESIII Collaboration)

ICHEP 2024 PRAGUE

42nd International Conference on High Energy Physics

July 17-24 2024 Prague Czech Republic

ichep2024.org

Electromagnetic Form Factors (EMFFs)

- Electromagnetic Form Factors are fundamental properties of the Baryons
 - Connected to charge, current distribution
 - > Crucial testing ground for models of the baryons' internal structure and dynamics

The baryon electromagnetic vertex Γ_{μ} describing the hadron current: $\Gamma_{\mu}(p',p) = \gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_p}F_2(q^2)$ $F_1(q^2)$: Dirac FF $F_2(q^2)$: Pauli FF Sachs FFs: $G_E(q^2) = F_1(q^2) + \tau\kappa_pF_2(q^2)$, $G_M(q^2) = F_1(q^2) + \kappa_pF_2(q^2)$

Time-like EMFFs: theoretic review

1961, first paper by N. Cabibbo and R. Gatto Phys. Rev. 124 (1961) 1577-1595

• The complex feature of TLFF leads to transversely polarized baryon even the beams are unpolarized. *Nuov Cim A* **109**, 241–256 (1996)

$$P_y = -\frac{\sin 2\theta \operatorname{Im}[G_E G_M^*]/\sqrt{\tau}}{\frac{|G_E|^2 \sin^2 \theta}{\tau} + |G_M|^2 (1 + \cos^2 \theta)}$$

Time-like EMFFs: experiment review

• Energy scan method at discrete c.m.energies

- Well-defined c.m.energy, low background
- Very good energy resolution
- Discrete values, leaving gaps without information

- Initial state radiation (ISR) method at a fixed c.m.energy e⁺
 - > At a fixed c.m.energy \sqrt{s} , collecting events from threshold to \sqrt{s}
 - Systematic uncertainty in a coherent way
 - Large luminosity needed
 - Higher background

BESIII Experiment

Spatial resolution $\sigma_{xy} \approx 130 \ \mu m$.

•

5

BESIII Dataset

Recent results of neutron EMFFs

- $\geq |G_E|, |G_M|$ of neutron are measured separately at $\sqrt{s} = 2.0-2.95$ GeV.
- Compared with the FENICE results, the values for $|G_M|$ from this work are smaller by a factor of 2-3. *Nucl. Phys. B517, 3 (1998)*
- Results are compared with various models: pQCD, modified dipole, VMD and dispersion relations (DR), and DR model gives good consistency.

Measurement of Hyperons FFs

- It is difficult to study EMFFs of hyperons in space-like due to the difficulty in stable and high-quality hyperon beams.
- The hyperons can be produced in e^+e^- annihilation above their production threshold.
- The angular distribution of daughter baryon from Hyperon weak decay is:

 $\ge \frac{d\sigma}{d\Omega} \propto 1 + \alpha_A P_y \cdot \hat{q}$

 $\succ \alpha_{\Lambda}$: asymmetry parameter (P-violation)

Advantages:

- > Cross section can be obtained very close to threshold with finite PHSP of final state.
- ➤ With hyperon weak decay to B+P, the polarization of hyperon can be measured, so does the relative phase between G_E and G_M ! (Of course, enough statistics needed)

Cross section of $e^+e^- \to \Lambda\overline{\Lambda}$

- Cross section of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ is measured with 11.9 fb⁻¹ data collected at $\sqrt{s} = 3.773$ to 4.258 GeV by ISR method.
- The non-zero cross section near threshold is consistent with previous measurement.

Cross section of $e^+e^- \rightarrow \Lambda\Lambda$

- A study of the cross section line shape to search for the source of the non-zero cross section has been performed.
- A model inspired by the perturbative QCD has been tried ٠ (blue dashed line in figure): *Phys. Rep. 550.1 (2015)*

$$\sigma(s) = \frac{c_0 \cdot \beta(s) \cdot C}{(\sqrt{s} - c_1)^{10}}$$

A model assuming a step exists near the threshold has been tried too (red solid line in figure): *PRL 124. 042001 (2020)*

$$\sigma(s) = \frac{e^{a_0} \pi^2 \alpha^3}{s[1 - e^{-\pi \alpha_s/\beta}] \left[1 + \left(\frac{\sqrt{s} - 2m_\Lambda}{a_1}\right)^{a_2}\right]}$$

- The latter gives a better description of the cross section.
- Some theorists think there are contributions of higher strangeonium decays ($\phi(4S)$, $\phi(3D)$) to the $\Lambda\overline{\Lambda}$ pair around 2.4-2.6 GeV.

PRD 107.072005 (2023)

Cross section of $e^+e^- \rightarrow \Sigma^+\overline{\Sigma}^-$

- Cross section and effective FF are measured with 11.9 fb⁻¹ data collected at $\sqrt{s} = 3.773$ to 4.258 GeV by ISR method.
- The non-zero cross section near threshold is consistent with previous measurement.

BESIII scan: $58 \pm 6^{+2.8}_{-2.6}$ pb at 2.3864 GeV (~1 MeV above threshold)

Belle ISR: $169 \pm 64 \pm 27$ pb in [2.379, 2.440] GeV BESIII ISR: $74^{+50}_{-52} \pm 5$ pb in [2.379, 2.440] GeV PRD 109, 034029 (2024)

Cross section of $e^+e^- \rightarrow \Sigma^+\overline{\Sigma}^-$

- A study of the cross section line shape has been performed.
- A model inspired by the perturbative QCD has been tried (blue line in figure): *Phys. Rep. 550.1 (2015)*

$$\sigma(s) = \frac{c_0 \cdot \beta(s) \cdot C}{(\sqrt{s} - c_1)^{10}}$$

• A model assuming a resonance exists based on the pQCD is tried (black line in figure):

$$\sigma(s) = \left| \sqrt{\frac{c_0 \cdot \beta(s) \cdot C}{(\sqrt{s} - c_1)^{10}}} + e^{i\phi} BW(s) \sqrt{\frac{P(s)}{P(M)}} \right|^2,$$

where $BW(s) = \frac{\sqrt{12\pi\Gamma^{ee}B\Gamma}}{s^2 - M^2 + iM}$

• The latter gives a better description of the cross section, a resonance state is proved to exist at around 2.5 GeV with a significance of 3.4σ .

Cross section of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$

- Measurements of cross section, $|G_E|$, $|G_M|$, and their ratio are performed at $\sqrt{s} = 4.64$ -4.95 GeV.
- Flat cross sections around 4.63 GeV are obtained and no indication of the resonant structure Y (4630), as reported by Belle, is found.
- An oscillation behavior is observed in the energy dependence of $|G_E|/|G_M|$, for the first time.

13

Cross section of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^{-*} + c.c.$

- Cross sections of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c (2595)^- + c.c.$ and $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c (2625)^- + c.c.$ are measured for the first time at 4.92 and 4.95 GeV. <u>PRD 16, 2165 (1977)</u>
- The angular distribution parameter α_{Λ_c} and FF ratio $\sqrt{|G_E|^2 + |G_M|^2}/|G_C|$ for $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c} (2625)^- + c.c.$ are extracted for the first time by studying the angular distributions of baryon in final state.
- The non-zero cross sections are observed close to threshold and are fitted by pQCD model.

Complete measurement of Σ^+ EMFFs

- An event of the reaction $e^+e^- \rightarrow \Sigma^+ (\rightarrow p\pi^0)\overline{\Sigma}^- (\rightarrow \overline{p}\pi^0)$ is formalized by joint angular distribution:
 - $\mathcal{W}(\xi) \propto \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi)$ Unpolarized part
 - + $\alpha_1 \alpha_2 (\mathcal{F}_1(\xi) + \sqrt{1 \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) + \alpha \mathcal{F}_6(\xi))$ Correlated part
 - + $\sqrt{1 \alpha^2} \sin(\Delta \Phi)(-\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi))$, Polarized part

 $\mathcal{F}_0(\xi)=1$

 $\mathcal{F}_{1}(\xi) = \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} - \cos^{2}\theta \cos\theta_{1} \cos\theta_{2}$ $\mathcal{F}_{2}(\xi) = \sin\theta \cos\theta (\sin\theta_{1} \cos\theta_{2} \cos\phi_{1} - \cos\theta_{1} \sin\theta_{2} \cos\phi_{2})$ $\mathcal{F}_{3}(\xi) = \sin\theta \cos\theta \sin\theta_{1} \sin\phi_{1}$ $\mathcal{F}_{4}(\xi) = \sin\theta \cos\theta \sin\theta_{2} \sin\phi_{2}$ $\mathcal{F}_{4}(\xi) = \cos^{2}\theta$

 $\mathcal{F}_5(\xi) = \cos^2 \theta$

 $\mathcal{F}_6(\xi) = \sin^2 \theta \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2 - \cos \theta_1 \cos \theta_2.$

• A nonzero relative phase leads to polarization p_y of the out going baryons:

$$P_{y} = \frac{\sqrt{1 - \alpha^{2}} \sin\theta \cos\theta}{1 + \alpha \cos^{2} \theta} \sin(\Delta \Phi)$$

Complete measurement of Σ^+ EMFFs

- Polarization is observed at $\sqrt{s} = 2.396$, 2.645 and 2.900 GeV with a significance of 2.2σ , 3.6σ and 4.1σ .
- Relative phase is determined for the first time in a wide q^2 range.

PRL 132, 081904 (2024)

Study of the spin 3/2 baryons: $e^+e^- \rightarrow \Delta \overline{\Delta}$

 $\Box e^+e^- \rightarrow \Delta^{++}\overline{\Delta}^{--}$ is searched at $\sqrt{s} = 2.3094-2.6464$ GeV.

≻ No significant signal observed, but signal for $e^+e^- \rightarrow \Delta^{++}p\pi^-$ observed.

PRD 108, 072010 (2023)

Study of the spin 3/2 baryons: $e^+e^- \rightarrow \Omega\overline{\Omega}$

■Born cross sections and effective FF of $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$ are measured at 8 energy points between $\sqrt{s} = 3.49$ and 3.67 GeV.

≻ No significant signal observed.

> Upper limit of effective FF is consistent with pQCD driven prediction.

PRD 107, 052003 (2023)

Summary

- Fruitful physics results of EMFFs are obtained from e⁺e⁻ colliders, via energy scan and ISR methods.
- Conventional parameterization of EMFFs is facing challenge from experimental observations (threshold effect, oscillation in reduced FFs and $|G_E/G_M|$ ratio).
- Relative phase of EMFFs gives rise to polarization of final baryons, and will play an important role in distinguishing various theoretical models.
- More results from BESIII are on the way.

Summary

- Fruitful physics results of EMFFs are obtained from e⁺e⁻ colliders, via energy scan and ISR methods.
- Conventional parameterization of EMFFs is facing challenge from experimental observations (threshold effect, oscillation in reduced FFs and $|G_E/G_M|$ ratio).
- Relative phase of EMFFs gives rise to polarization of final baryons, and will play an important role in distinguishing various theoretical models.
- More results from BESIII are on the way.

