

Axion-like particle and dark sector search at BESIII

Xiaoxuan Ding Peking University On behalf of the BESIII collaboration

July 18th, Prague

42^M INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS 18-24 July 2024 • Standard Model (SM) is incredibly successful in describing the properties of visible matter

 \checkmark Ieptons, photon, Z, W^{\pm} , Higgs, quarks, mesons, hadrons

Matter-antimatter asymmetry

Galactic rotation curve

arXiv:astro-ph/0403324

PRL 131, 161802(2023)

There is nothing new to be discovered in physics now. 68% Dark Energy Dark Matter 27% Velocity (km s⁻¹) О 20.000 30,000 40,000 Distance (light years) Visible Matter of Elem ntary Particles Dark Matter (Territors) Interactions / force carriers naus 63.2 MeM 38 DAVID area deve 115.11 GeV/P H C Ĵ up charm top gluon higgs nA 7 Mehile d s b down strange bottom photon O STO MeVIC 0.00 MeVA CMA Device e μ Physics BSM must exist! Z boson electron muon tau LEPTONS *LB eVIC 17 Metallo V electron neutrino muon neutrino tau neutrino W boson

Dark sector

- A collection of particles that are not charged directly under the SM strong, weak, or electromagnetic forces.
 - May interact with SM particle through portal interactions, not through gravitational effect not.
- ➡ Dark sector particles
- Axion: QCD axion and axion like particles
- Muonphilic vector or scalar
- **Dark photon** γ' : Massive or massless
- SUSY, dark Higgs, heavy neutrinos, dark fermion

If their mass are in the MeV-GeV range \rightarrow Accessible at BEPCII and BESIII experiment.

Beijing Spectrometer III Detector

BESIII Experiment

Beijing Electron–Positron Collider II

NIMA 614, 345 (2010) CPC 44, 040001 (2020)

What is ALP	
O QCD axion (<i>a</i>)	PRL. 40, 223 (1978) PRL. 40, 279 (1978)
• Predicted by the Peccei-Quinn (PQ) s	ution to the strong CP problem, could also be a dark matter candidate
O Axion-like particles (ALPs)	
• Have the same quantum numbers as masses and couplings.	e QCD axion, but could have arbitrary PLB 753,482 (2016)
• The ALP-photon coupling $g_{a\gamma\gamma}$ is mo	y discussed \rightarrow ALP decays to two photon e^{-} γ
• Experimental bounds on $g_{a\gamma\gamma}$ with $m_{e^+e^-}$ colliders	range of $MeV/c^2 - GeV/c^2$ mainly from
	Resonant ALP production
$\frac{1}{\sqrt{J/\psi}}$	s searched via $\gamma a, a \rightarrow \gamma \gamma$
Using 2.7B $\psi(2S)$ Data, in 0.165 < m_a < 2.84 GeV/ c^2	Using 10B J/ψ Data, in $0.18 < m_a < 2.85 \text{ GeV}/c^2$ JHEP. 06, 091 (2019)
PLB 838(2023) 137698	arXiv:2404.04640 Accepted by PRD(L)
dingxx@stu.pku.edu.cn	

ALP search

Dark Sector

Summary

7

Introduction

BEPCII & BESIII

dingxx@stu.pku.edu.cn

0.5

0^L

ICHEP 2024

 10^{-3}

 10^{-2}

 10^{-1}

 $m_a (GeV/c^2)$

2.5

3

2

1.5

 $m_a (GeV/c^2)$

10

date for $0.18 < m_a < 2.85 \text{ GeV}$

ICHEP 2024

dingxx@stu.pku.edu.cn

10¹

BESIII (1/w)

10⁰

 10^{-4}

10-3

Beam dump

 10^{-1}

*m*_a (GeV/*c*²)

 10^{-2}

Introduction	BEPCII & BESIII	ALP search	Dar	k Sector	Summary
(Other)		√Search •Ma •Mu	for fully invisus ssive dark pho onphilic scala	sible decays oton or X_0 or vector X_1	This talk
Dark sector search	tor search		η,η',ω,ϕ	PRD 105, L071101 (2022) PRD 98, 032001 (2018) PRD 87, 012009 (2013)	
and the second		√ Other s	earches with	invisible signatures	PLB 852 ,138614 (2024)
		•FC	NC process:		PRD 105, L071102 (2022) PRD 105, 106, 072008 (2022)
		Σ^+	$\rightarrow p + \text{ invisit}$	ole, $\Lambda_c^+ \to p + \text{ invis}$	ible, $D^0 \to \pi^0 \nu \bar{\nu}$
		• J/ψ	$\gamma \rightarrow \gamma + invisit$	ble	PRD 101, 112005 (2020)
		√ Visible	e dark photon	searches	
		t a l		. 1+1-	

• $e^+e^- \rightarrow \gamma \gamma', \gamma' \rightarrow l^+l^-$ • $J/\psi \rightarrow \eta \gamma', \gamma' \rightarrow e^+e^-$

PLB 774, 252(2017) PRD 99, 012006 (2019)

Introduction	BEPCII & BESIII	ALP search	Dark Sector	
What is Dark p	bhoton γ'			
O An extra Abelian g	gauge group $U(1)_D$:		Magging of the group of	

PLB, 196 (1986)

- A minimal extension to SM, causing the associated spin-one boson the dark photon
- The dark photon has a kinetic mixing with SM photon through

with a kinetic mixing parameter $\varepsilon \sim 10^{-3}$ (empirical, very small)

 $\rightarrow \frac{1}{2} \mathcal{E} F'_{\mu\nu} F^{\mu\nu}$

- *ɛ*: controls the coupling strength
- $F'_{\mu\nu}$: field strengths of the dark photon

• Massive γ' , if the symmetry is spontaneously broken

Summary

• Massless γ' , if the symmetry is unbroken

Introduction	BEPCII & BESIII	ALP search	Dark Sector	Summary
Muonphilic scala	r X_0 or vector X_1			
\rightarrow Similar to the previo	us dark photon, an extra <i>U</i> (1) group is added as a mini	mal JHEP10(2020)207 Mod. Phys. Lett. A 06, 527 (1991 PRD 43, R22 (1991)).
extension to the SM				
• $U(1)_{L_{\mu}-L_{\tau}}$ model : a	new massive vector boson	X_1 or scalar boson X_0 only	$\mathcal{L}_{\mu}^{ ext{scalar}} = -g_0 X$	$X_0 \ \overline{\mu} \ \mu,$
couple to the second	nd or third generations of l	eptons $(\mu, \nu_{\mu}, \tau, \nu_{\tau})$ with the	$\mathcal{L}_{\mu}^{\rm vector} = -g_1 X$	$X_{1\alpha} \overline{\mu} \gamma^{lpha} \mu.$
coupling strength g	' ₁ , <i>8</i> ' ₀	Eur. Phys. J. C 81, 861	(2021).	γ γ
• The light muonphi	lic scalar or vector particle	es can contribute to the m		
anomalous magne	tic moment and explain the q_2'	$(g-2)_{\mu}$ anomaly g'_{μ}	μ^-	μ^-
с —	$\gamma \mu^{-}$	$c \qquad \gamma \qquad \mu^{-}$	Can be accessible	e via $J/\psi ightarrow \mu^+ \mu^- X_{0,1}$
			with $X_{0,1}$ invisible	at BESIII
(4	a) $\searrow \mu^+$	(b)	$\searrow \mu^+$	
dingxx@stu.pku.e	du.en	ICHEP 2024		14

Introduction	BEPCII & BESIII	ALP search	Dark Sector	Summary

Three cases of muonphilic particles

Introduction	BEPCII & BESIII	ALP search	Dark Sector	Summary

- Search for a muonphilic scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^+\mu^- +$ invisible decays <u>PRD 109, L031102 (2024)</u>
 - **O** Data samples: **9B** J/ψ events

• Signal extraction: A series of unbinned maximum likelihood fits are performed to $M_{\text{recoil}}^2(\mu^+\mu^-)$ or $M_{\text{recoil}}(\mu^+\mu^-)$

$$\begin{split} M_{recoil}^2(\mu^+\mu^-) &= \\ (p_J - p_{\mu^+} - p_{\mu^-})^2 \end{split}$$

- The maximum local significance is 2.5σ at $M(X_{0,1}) = 720 \text{ MeV}/c^2$
- **O** No evidence for $J/\psi \rightarrow \mu^+\mu^- + X_{0,1}$ signals

• Low mass region, with $M(X_{0,1}) = 120 \text{MeV}/c^2$

High mass region, with $M(X_{0,1}) = 720 \text{MeV}/c^2$

ICHEP 2024

Summary

→BESIII plays an active role in dark sector and axion-like particle search, with many first searches or best limits

Axion-like particles (ALPs) search

Search for an **axion-like** particle in radiative J/ψ decays

✓ Using 2.7B ψ (3686) data PLB 838 137698 (2023)

✓ Using 10B J/ψ data

Accepted by PRD(L)

Dark sector search

PRD 109, L031102 (2024)

✓ Search for a **muonphilic** scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^+\mu^-$ + invisible =>>

✓ Search for Massive dark photon with $e^+e^- \rightarrow \gamma \gamma'$ PLB 839 (2023) 137785

Stringent limits on the **coupling** $g'_{0,1}$ are set

Introduction

BEPCII & BESIII

ALP search

Future

- BESIII has recently collected 20 fb⁻¹ of $\psi(3770)$ data sample
 - ➡More conclusive results are ongoing!

Enlightening the dark, coming is the future!

Thanks for your attention!

Back UP

ICHEP 2024

- → A massless dark photon γ' could induce FCNC process through higher dimensional operators
- **Data samples**: 4.5 fb⁻¹ e^+e^- annihilation data at $\sqrt{s} = 4.6 \sim 4.7$ GeV
- Strategy: Double-Tag technique
- **o** Results:
 - \checkmark No signal is observed

✓ 90% C.L. upper limit on BF is set $\mathscr{B}(\Lambda_c^+ \to p\gamma') < 8 \times 10^{-5}$

$\begin{array}{c} c & & & u \\ \Lambda_c^+ & u & & & u \\ d & & & & d \end{array}$

10 hadronic decay modes

Introduction	BEPCII & BESIII	ALP search	Dark Sector	Summary
\circ Mativation on	Dark sector			

- The dark sector could be light and communicate with the visible sector through a feeble portal interaction
 - The dark sector models can be classified based on the mediator particle or "portal"

• Beyond these, certain anomaly gauged $U(1)_{L_{\mu}-L_{\tau}}$ model

Introduction	BEPCII & BESIII	ALP search	Dark Sector	Summary
Search for an	axion-like parti	cle in radiative	J/ψ decays	PLB 838 137698 (2023)
O Data samples:	2.7B ψ (3686) events			γ . [²
O Strategy:			$\psi(2S)$	$ \begin{array}{c} \overline{c} \\ \overline{c} \\ \overline{c} \\ \overline{d} \\ J/\psi \end{array} $
Search for $J/\psi \rightarrow$	$\gamma a, a \rightarrow \gamma \gamma$ with ψ (3686	$) \rightarrow \pi^+ \pi^- J/\psi$ decays	c c	
Search range:	$0.165 < m_a < 2.84 \text{ GeV}/c^2$	2		in a start of the
• <i>a</i> : negligible	decay width and lifetime	▶ decay width $\Gamma_a = g_a$	$m_{a\gamma\gamma}^2 m_a^3/64\pi$	$m_{L/k}^2$ (m^2) ³
• $\psi(3686)$ deca	ay		$\mathcal{B}(J/\psi ightarrow \gamma a)$ =	$= \frac{J/\psi}{32\pi\alpha_{\rm em}} g_{a\gamma\gamma}^2 \left(1 - \frac{m_a}{m_{J/\psi}^2}\right) \mathcal{B}(J/\psi \to e^+ e^-),$
☆ precludeQED bac	the pollution from non-resolution $e^+e^- \rightarrow \gamma\gamma(\gamma)$	onant production, avoid	large $(\overline{z_{2}})^{10^5}$	$ \begin{array}{c} \bullet \text{Data} \qquad \qquad J/\psi \rightarrow \gamma \pi^0 \pi^0 \\ & \swarrow J/\psi \rightarrow \gamma \pi^0 \swarrow J/\psi \rightarrow \gamma \eta_c \\ & \qquad \qquad J/\psi \rightarrow \gamma \eta \swarrow J/\psi \rightarrow \gamma \gamma \gamma \\ & \qquad \qquad$
• Three $\gamma \gamma$ com fits on $M_{\gamma\gamma}$	binations per event, perform	m unbinned maximum-li	kelihood 50° 10 ⁴	

• Exclude mass intervals around π^0 , η , η' peaks when extracting the signal

3

2.5

2

Introduction	BEPCII & BESIII	ALP search	Dark Sector	Summary

Search for an axion-like particle in radiative J/ψ decays

PLB	838	(2023)) 137698
-----	-----	--------	----------

Chinksmule Constant and maint

Table 1

The $M_{\gamma\gamma}$ fit intervals to	m_{α} points.
m_a points (GeV/ c^2)	$M_{\gamma\gamma}$ fit intervals (GeV/ c^2)
0.165 - 0.35	0.06 - 0.45
0.35 - 0.75	0.25 - 0.85
0.75 - 1.20	0.65 - 1.30
1.20 - 2.84	$(m_a - 0.2) - (m_a + 0.2)$

674 hypothesis

arXiv:2404.04640

TABLE I. The fit intervals of $m_{\gamma\gamma}$ for various m_a points.

m_a range	$m_{\gamma\gamma}$ fit interval	Polynomial
$({ m GeV}/c^2)$	$({ m GeV}/c^2)$	function order
0.180 - 0.420	0.16, 0.46	4^{th}
0.421 - 0.490	0.39, 0.51	5^{th}
0.610 - 0.880	0.59, 0.90	5^{th}
1.020 - 1.099	1.00, 1.20	5^{th}
1.100 - 2.770	$m_a - 0.10, m_a + 0.10$	$3^{\rm rd}$
2.772 - 2.850	2.70, 2.88	4^{th}

The largest value of upward local significance is determined to be 3.5 σ at ma = 2.786 GeV/ c^2

Introduction	BEPCII & BESIII	ALP search	Dark Sector	Summary
Search for N	Massive dark p	ohoton with e	$^+e^- \rightarrow \gamma \gamma'$	PLB 839 (2023) 137785

$$\sigma(e^+e^- \to \gamma\gamma') = \frac{2\pi\alpha^2}{s}\epsilon^2 \left(1 - \frac{m_{\gamma'}^2}{s}\right) \times \left(\left(1 + \frac{2\frac{m_{\gamma'}^2}{s}}{\left(1 - \frac{m_{\gamma'}^2}{s}\right)^2}\right) \log \frac{(1 + \cos\theta_c)^2}{(1 + \cos\theta_c)^2} - 2\cos\theta_c\right) \quad \begin{array}{l} \cos\theta_c = 0.6 \text{ is the } \cos\theta_c = 0.6 \text{ is th$$

Search for single photon signals in $1.3 < E(\gamma) < 1.8$ GeV corresponding to $1.5 < m_{\gamma'} < 2.9$ GeV

Low E(γ) region → low trigger efficiency & high background level
 High E(γ) region → saturation of the EMC electronics

dingxx@stu.pku.edu.cn

Introduction	BEPCII & BESIII	ALP search	Dark Sector	Summary			
Search for a muonphilic scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^+ \mu^- +$ invisible decays							

Decay width

$$\begin{split} |\mathcal{M}_{\mu\mu\chi_{0}}|^{2} &= \left(\frac{2}{3}e^{2}g_{0}\frac{f_{J}}{m_{J}}\right)^{2}\frac{-8}{3\,m_{J}^{2}(m_{J}-2\,E_{-})^{2}(-2\,E_{-}-2\,E_{X}+m_{J})^{2}} \left(-4\,m_{\mu}^{2}\left(4\,E_{-}^{2}\left(m_{X}^{2}-2\,E_{X}\,m_{J}\right)\right)\right) \\ &+E_{-}\left(-8\,E_{X}^{2}\,m_{J}+4\,E_{X}\left(m_{X}^{2}+2\,m_{J}^{2}\right)-4\,m_{X}^{2}\,m_{J}\right)-E_{X}^{2}\left(m_{X}^{2}-6\,m_{J}^{2}\right)-2\,E_{X}\,m_{J}\left(m_{X}^{2}+m_{J}^{2}\right)+m_{X}^{2}m_{J}^{2}\right) \\ &+4\,E_{-}^{2}\left(2\,E_{X}^{2}\,m_{J}^{2}+m_{X}^{2}\,m_{J}(m_{J}-2\,E_{X})+m_{X}^{4}\right) \\ &+4\,E_{-}\left(2\,E_{X}^{3}\,m_{J}^{2}-2\,E_{X}^{2}\,m_{J}\left(m_{X}^{2}+m_{J}^{2}\right)+E_{X}\left(m_{X}^{4}+3\,m_{X}^{2}\,m_{J}^{2}\right)-m_{X}^{2}\,m_{J}\left(m_{X}^{2}+m_{J}^{2}\right)\right) \\ &-16\,E_{X}^{2}\,m_{\mu}^{4}+m_{J}\left(-4\,E_{X}^{3}\,m_{J}^{2}+2\,E_{X}^{2}\left(3\,m_{X}^{2}\,m_{J}+m_{J}^{3}\right)-2\,E_{X}\left(m_{X}^{4}+2\,m_{X}^{2}\,m_{J}^{2}\right)+m_{X}^{2}\,m_{J}\left(m_{X}^{2}+m_{J}^{2}\right)\right) \end{split}$$

where E_{-} , the energy of μ^{-} and E_X , the energy of X_0 are measured in the rest frame of J/ψ .

$$\Gamma_{\mu\mu X_{0,1}} = \int_{E_X^{min}}^{E_X^{max}} \int_{E_-^{min}}^{E_-^{max}} \frac{|\mathscr{M}_{\mu\mu X_{0,1}}|^2}{64\pi^3 m_J} dE_- dE_X,$$

$$\begin{split} |\mathcal{M}_{\mu\mu X_{1}}|^{2} &= \left(\frac{2}{3}e^{2} g_{1} \frac{f_{J}}{m_{J}}\right)^{2} \frac{-16}{3 m_{J}^{2}(m_{J}-2 E_{-})^{2}(-2 E_{-}-2 E_{X}+m_{J})^{2}} \left(16 E_{-}^{4} m_{J}^{2}+32 E_{-}^{3} m_{J}^{2}(E_{X}-m_{J}) + 2m_{\mu}^{2} \left(4 E_{-}^{2} \left(m_{J}(m_{J}-2 E_{X})+m_{X}^{2}\right)-4 E_{-} \left(2 E_{X}^{2} m_{J}-E_{X} \left(m_{X}^{2}+3 m_{J}^{2}\right)+m_{J} \left(m_{X}^{2}+m_{J}^{2}\right)\right) + 2 E_{X}^{2} \left(m_{X}^{2}+3 m_{J}^{2}\right)-2 E_{X} m_{J} \left(m_{X}^{2}+2 m_{J}^{2}\right)+m_{J}^{2} \left(m_{X}^{2}+m_{J}^{2}\right)\right) + 4 E_{-}^{2} \left(m_{J}^{2} \left(6 E_{X}^{2}-14 E_{X} m_{J}+7 m_{J}^{2}\right)+m_{X}^{2} m_{J} (3 m_{J}-2 E_{X})+m_{X}^{4}\right) + 4 E_{-} \left(2 E_{X}^{3} m_{J}^{2}-2 E_{X}^{2} m_{J} \left(m_{X}^{2}+4 m_{J}^{2}\right)+E_{X} \left(m_{X}^{4}+5 m_{X}^{2} m_{J}^{2}+9 m_{J}^{4}\right)-m_{J} \left(m_{X}^{4}+3 m_{X}^{2} m_{J}^{2}+3 m_{J}^{4}\right)\right) + 8 E_{X}^{2} m_{\mu}^{4}+m_{J} \left(-4 E_{X}^{3} m_{J}^{2}+2 E_{X}^{2} \left(3 m_{X}^{2} m_{J}+5 m_{J}^{3}\right)-2 E_{X} \left(m_{X}^{2}+2 m_{J}^{2}\right)^{2}+m_{J} \left(m_{X}^{4}+3 m_{X}^{2} m_{J}^{2}+2 m_{J}^{4}\right)\right)\right), \end{split}$$

where E_{-} , the energy of μ^{-} and E_X , the energy of X_0 are measured in the rest frame of J/ψ .