

The University of Manchester

Recasting scalar-tensor theories of gravity for colliders

Based on work with: Clare Burrage (Nottingham), Edmund Copeland (Nottingham), Christoph Englert (Glasgow), Andrei Lazanu (Manchester), **Sergio Sevillano Muñoz (IPPP, Durham)**, Michael Spannowsky (IPPP, Durham)

Peter Millington (UKRI Future Leaders Fellow, Particle Theory Group, University of Manchester) peter.millington@manchester.ac.uk ICHEP 2024, Prague, 18 July 2024

Science and Technology **Facilities Council**

Thank you, Ken Wilson!

Build me a bigger collider!

Thank you, Ken Wilson!

Build me a bigger collider!

see also Zimmermann et al. 2024 arXiv:2405.20374 [link]

mass

see also Zimmermann et al. 2024, arXiv:2405.20374 [link]

Lovelock's theorem

the metric $g_{\mu\nu}$ necessarily leads to the **Einstein field equations**

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda = \kappa T_{\mu\nu}$$

Einstein Tensor CC SM

a local gravity action in (3+1)D containing only 2nd-order derivatives of

Lovelock 1971, J. Math. Phys. 12, 498 [link]

 $S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} (R - 2\Lambda) + S_{\rm SM} = S^{\dagger}$

 $S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} (R - 2\Lambda) + S_{\rm SM} = S^{\dagger}$

spacetime volume element

 $S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} (R - 2\Lambda) + S_{\rm SM} = S^{\dagger}$

spacetime volume element

 $S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} (R - 2\Lambda) + S_{\rm SM} = S^{\dagger}$ Ricci scalar

volume element

volume element

make the Planck mass dynamical

 $S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} (R - 2\Lambda) + S_{\rm SM} = S^{\dagger}$

make the Planck mass dynamical

add extra dimensions

 $S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} (R - 2\Lambda) + S_{\rm SM} = S^{\dagger}$

add extra dimensions

change the underlying symmetries

add extra dimensions

change the underlying symmetries

dimensions

change the underlying symmetries

dimensions

see, e.g., Clifton, Ferreira, Padilla, Skordis 2012, Phys. Rept. 513, 1 [link]

add terms with higher derivatives or abandon locality

see, e.g., Clifton, Ferreira, Padilla, Skordis 2012, Phys. Rept. 513, 1 [link]

see, e.g., Clifton, Ferreira, Padilla, Skordis 2012, Phys. Rept. 513, 1 [link]

see, e.g., Clifton, Ferreira, Padilla, Skordis 2012, Phys. Rept. 513, 1 [link]

Geodesic equation

connection encodes the geometry

$g_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\lambda}$ can be **timelike**, **spacelike** or **null** (i.e., zero)

$$\int_{\alpha\beta}^{\mu} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\lambda} = 0$$

Weyl rescaling

$$g_{\mu\nu} \rightarrow \Omega^2(x) g_{\mu\nu}$$

$$\frac{d^2 x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda}$$
acodesic motion

and
$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \to \Omega^{-2}(x) \frac{\mathrm{d}}{\mathrm{d}\lambda}$$

$$-g_{\alpha\beta}\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\lambda}\frac{\mathrm{d}x^{\beta}}{\mathrm{d}\lambda}\frac{\partial}{\partial x_{\mu}}\ln\Omega=0$$

"fifth force"

Jordan versus Einstein frame

Jordan frame

$$S = \int d^4x \sqrt{-g} \left[\frac{F(\phi)}{2} R - \frac{Z^{\mu\nu}(\phi)}{2} \right]$$

Einstein frame, via $g_{\mu\nu} = M_{\rm Pl}^2 F^{-1}(\phi) \tilde{g}_{\mu\nu} = M_{\rm Pl}^2 A^2(\tilde{\phi}) \tilde{g}_{\mu\nu}$

$$S = \int \mathrm{d}^4 x \sqrt{-\tilde{g}} \left[\frac{M_{\rm Pl}^2}{2} \tilde{R} - \frac{\tilde{Z}^{\mu\nu}(\tilde{\phi}, \partial q)}{2} \right]$$

 $\frac{(\phi,\partial\phi,\ldots)}{2}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi) + \mathscr{L}_{\rm SM}(g_{\alpha\beta})$

 $\frac{\partial \tilde{\phi}, \ldots)}{\partial \omega} \partial_{\mu} \tilde{\phi} \partial_{\nu} \tilde{\phi} - \tilde{V}(\tilde{\phi}) + \mathscr{L}_{\rm SM}(A^2(\tilde{\phi})\tilde{g}_{\alpha\beta})$

see also Finn, Karamitsos 2020, Pilaftsis Phys. Rev. D 102, 045014

Einstein frame

$S_{\rm SM}[A^2(\tilde{\phi})\tilde{g}_{\mu\nu}, \{\psi\}] = S_{\rm SM}[\tilde{g}_{\mu\nu}, \{\psi\}] + \frac{1}{2}[A^2(\tilde{\phi}) - 1]\tilde{T}_{\rm SM} + \dots$ "universal" coupling to SM

Test particle experiences a **fifth force**: $F/m = -\nabla \ln A(\phi)$

 $\tilde{U}(r) \supset -\frac{1}{\tilde{Z}(\tilde{\varphi})c_s^2(\tilde{\varphi})} \left[\frac{\mathrm{d}A(\tilde{\varphi})}{\mathrm{d}\tilde{\varphi}}\right]^2 \frac{1}{4\pi r} \exp\left[-\frac{m(\tilde{\varphi})r}{\tilde{Z}^{1/2}(\tilde{\varphi})c_s(\tilde{\varphi})}\right] \mathcal{M}$

see e.g., Gessner 1992, Astrophys. Space Sci. 196, 1 [link]; Damour, Polyakov 1994, Nucl. Phys. B 423, 532 [link]; Hinterbichler, Khoury 2010, Phys. Rev. Lett. 104, 213301 [link]

 $\tilde{U}(r)$

symmetron/Damour-Polyakov decrease the coupling strength $dA(\tilde{\varphi})$

 $\overline{\tilde{Z}(\tilde{\varphi})c_s^2(\tilde{\varphi})}$

 $\mathrm{d} ilde{arphi}$

see e.g., Gessner 1992, Astrophys. Space Sci. 196, 1 [link]; Damour, Polyakov 1994, Nucl. Phys. B 423, 532 [link]; Hinterbichler, Khoury 2010, Phys. Rev. Lett. 104, 213301 [link]

U(r)

see e.g., Gessner 1992, Astrophys. Space Sci. 196, 1 [link]; Damour, Polyakov 1994, Nucl. Phys. B 423, 532 [link]; Hinterbichler, Khoury 2010, Phys. Rev. Lett. 104, 213301 [link]

U(r)

Weyl invariance

This is not the full story ...

The SM Lagrangian is scale invariant with the exception of the quadratic term in the Higgs potential.

EW Stationery Ltd

Beyond GR or Beyond SM?

scalar-tensor extension of GR

 $\phi^2 R$

versus

$$\phi^2 |H|^2$$

Higgs-portal extension of the SM

Burrage, Copeland, PM, Spannowsky 2018, JHEP11(2018)036 [link]

Beyond GR or Beyond SM?

as modified gravitational dynamics

Coupling to leptons

 $\mathscr{L}_{\text{eff}} \supset -\frac{2\mu^2}{m_H^2} \frac{m_L}{M} \bar{\psi}_L \zeta \psi_L \quad \text{where} \quad \frac{2\mu^2}{m_H^2} = 1 \quad \text{for the SM}$

Burrage, Copeland, PM, Spannowsky 2018, JHEP11(2018)036 [link]

Scale symmetry breaking

Fifth forces from $F(\phi)R$ terms depend on the origin of scale breaking in the electroweak and QCD sectors (and the origin of neutrino masses).

explicit scale breaking \Rightarrow fifth force coupling

dynamical scale breaking \Rightarrow **no** fifth force coupling

But **beware**, fine tuning.

see e.g. Higgs-Dilaton theories: Shaposhnikov, Zenhäusern 2009, Phys. Lett. B 671, 187 [link]; see also Brax, Davis 2014, JCAP05(2014)019 [link]; Ferreira, Hill, Ross 2017, Pays. Rev. D 95, 064038 [link]; Burrage, Copeland, PM, Spannowsky 2018, JHEP11(2018)036 [link]

Coupling to hadrons (for the SM)

$$\mathscr{L}_{\text{eff}} \supset -\eta \frac{m_N}{M} \bar{\psi}_N \zeta \psi_N \text{ with } \eta$$

heavy quarks

light quarks

Burrage, Copeland, PM, Spannowsky 2018, JHEP11(2018)036 [link]

Fifth forces in the Jordan frame

Fifth forces in the Jordan frame arise via mixing with the graviton ($g \rightarrow \eta + g$):

$$\begin{aligned} \mathscr{L} &= \frac{F(\phi)}{4} \left[\frac{1}{4} \partial_{\mu} g \partial^{\mu} g - \frac{1}{2} \partial_{\rho} g_{\mu\nu} \partial^{\rho} g^{\mu\nu} \right] + \\ &- \frac{1}{2} \left[Z(\phi) + \frac{[F'(\phi)]^2}{2F(\phi)} \right] \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \\ &+ \frac{1}{2} g^{\mu\nu} T_{\mu\nu} + \mathscr{L}_{\rm SM}(\eta, \{\psi\}) \end{aligned}$$

Copeland, PM, Sevillano Muñoz 2111.06357; graphic by Sergio Sevillano Muñoz

Procedure

Sevillano Muñoz, Copeland, PM, Spannowsky 2211.14300; based on slide by Sergio Sevillano Muñoz

Automation – FeynMG

FeynMG: a FeynRules extension for scalar-tensor

Sergio Sevillano Muñoz^{a,*}, Edmund J. Copeland^a, Peter Millington^b, Michael Spannowsky^c

^aSchool of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK ^bDepartment of Physics and Astronomy, University of Manchester, ^cInstitute for Particle Physics Phenomenology, Department of Physics, Durham University,

Sevillano Muñoz, Copeland, PM, Spannowsky 2211.14300; based on slide by Sergio Sevillano Muñoz

theories of gravity

FeynMG

- 1. Load FeynRules and FeynMG into Mathematica.
- 2. Load a FeynRules Model File, say for the full SM.
- 3. Use FeynMG to append a (modified) gravitational sector and condition the Lagrangian into a form for FeynRules to process.
- 4. Generate Feynman rules or export to existing analysis pipelines (e.g., MadGraph).

MadGraph Output

Sevillano Muñoz, Copeland, PM, Spannowsky 2211.14300; based on slide by Sergio Sevillano Muñoz FeynRules: <u>https://feynrules.irmp.ucl.ac.be/;</u> MadGraph: <u>http://madgraph.phys.ucl.ac.be/index.html</u>

An example: off-shell coupling

Consider the coupling

The energy-momentum tensor $T_{\mu\nu}$ of an on-shell state has vanishing divergence, so ϕ will couple only to off-shell states.

First deviations for 2 to 3 processes or at the loop level ...

 $\mathscr{L} \supset \frac{C}{M^3} T_{\mu\nu} \partial^{\mu} \partial^{\nu} \phi$

Englert, Lazanu, Millington 2024 (to appear)

An example: off-shell coupling

Left: Cross-section for ϕ plus two jets for the ATLAS IM0 selection before the ϕ decay. Right: Translation of this into exclusion contours assuming ϕ is stable.

Englert, Lazanu, Millington 2024 (to appear)

Summary

QFT prevents us from disentangling **extensions of the SM**.

Screened fifth forces have rich phenomenology due to their environmental dependence.

Parallels between scalar-tensor theories of gravity and: **axion-like models**, **ultra-light dark matter models**, **Higgs-portal theories**, ...

Particle physics of a broad class of models can be automated ... with **FeynMG** ... with novel collider signatures.

QFT prevents us from disentangling scalar extensions of GR from scalar

Fifth force

Classical equation of motion for pertu

$\tilde{Z}(\tilde{\varphi})(\dot{\delta}\tilde{\varphi} - c_s^2(\tilde{\varphi})\nabla^2\delta\tilde{\varphi})$

Yukawa potential around a point source

$$\tilde{U}(r) \supset -\frac{1}{\tilde{Z}(\tilde{\varphi})c_s^2(\tilde{\varphi})} \left[\frac{\mathrm{d}A(\tilde{\varphi})}{\mathrm{d}\tilde{\varphi}}\right]^2 \frac{1}{4\pi r} \exp\left[-\frac{m(\tilde{\varphi})r}{\tilde{Z}^{1/2}(\tilde{\varphi})c_s(\tilde{\varphi})}\right] \mathcal{M}$$

Irbations
$$\delta \tilde{\varphi} = \left\langle \tilde{\phi} \right\rangle - \tilde{\varphi}$$
:

$$+ m^{2}(\tilde{\varphi})\delta\tilde{\varphi} = -\frac{1}{2}\frac{\mathrm{d}A^{2}(\tilde{\varphi})}{\mathrm{d}\tilde{\varphi}}\tilde{T}_{\mathrm{SM}}$$

$$\mathbf{e} \ \tilde{T} = -A^{-1}(\tilde{\varphi}) \mathscr{M} \delta^3(\mathbf{x}):$$

Joyce, Jain, Khoury, Trodden 2015, Phys. Rept. 568, 1 [link]

Higgs-Dilaton

$M_{\rm Pl}^2 R \rightarrow (\xi_H H^2 + \xi_\phi \phi^2) R$ and

$$\sigma \propto \ln \left[(6\xi_{\phi} + 1)\phi^2 + (6\xi_H + 1)H^2 \right]$$

with at most derivative couplings to the Higgs boson \Rightarrow **no fifth forces**.

e.g., Shaposhnikov, Zenhäusern 2009, Phys. Lett. B 671, 187 [link]; Brax, Davis 2014, JCAP05(2014)019 [link]; Ferreira, Hill, Ross 2017, Pays. Rev. D 95, 064038 [link]; Burrage, Copeland, PM, Spannowsky 2018, JHEP11(2018)036 [link]

$$-\mu^{2}H^{2} + \frac{\lambda}{4}H^{4} \rightarrow \frac{\lambda}{4}\left(H^{2} - \frac{\beta}{\lambda}\phi^{2}\right)^{2}$$

There is a **conserved dilatation current**, and a **massless Goldstone mode**

