

# Non-perturbative thermal QCD at very high temperatures

Leonardo Giusti

University of Milano-Bicocca & INFN





#### Collaboration:

Bresciani, Dalla Brida, LG, Harris, Laudicina, Pepe, Rescigno, JHEP 04 (2022) 034 [2112.05427], PLB 855 (2024) 138799 [2405.04182], and in preparation



ICHEP 2024 - Prague - July 17-24, 2024

#### Outline

- Non-perturbative (NP) thermal QCD up to very high T: why ?
- Renormalization and shifted boundary conditions: how ?
- Lattice setup
- Results for mesonic and baryonic screening masses
- Preliminary results for the Equation of State
- Conclusions and Outlook

#### Thermal QCD: relevant scales and effective theories

[Ginsparg 80; Linde 80; Appelquist, Pisarski 81; Braaten, Nieto 96; ...]

- The three relevant scales in the problem are:
  - $M = \pi T + \dots$  Fermions [3D NRQCD] and non-zero Matsubara gluon modes
  - $m_{
    m \scriptscriptstyle E} \propto gT + \ldots ~~A_0$  zero Matsubara gluon modes [3D EQCD]

 $g_{\rm E}^2 = g^2 T + \dots A_i$  zero Matsubara gluon modes [3D MQCD]

• Thanks to asymptotic freedom, at asymptotically high T a hierarchy between the three scales is generated

$$\frac{g_{\rm E}^2}{\pi} \ll m_{\rm E} \ll \pi T \qquad \Longleftrightarrow \qquad \left(\frac{g}{\pi}\right)^2 \ll \frac{g}{\pi} \ll 1$$

- Perturbation theory developed for high T regime [See Laine, Vuorinen 17 for a review]
- Contributions from lowest scale must always be computed NP

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order



- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order



3/9

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order



[Kajantie et al. 02; LG, Pepe 17]

• For the SU(3) YM theory, if we (assume convergence and) fit the 4 highest temperatures by including an effective (NP) term

$$\frac{s(T)}{T^3} = \frac{32\pi^2}{45} \left\{ 1 + s_2 \hat{g}^2 + s_3 \hat{g}^3 + s_4(\hat{g}) \hat{g}^4 + s_5 \hat{g}^5 + s_6(\hat{g}) \hat{g}^6 + \frac{q_c}{(2\pi)^6} \hat{g}^6 \right\}$$

the  $\mathcal{O}(\hat{g}^6)$  is still ~ 50% of the total contribution from interactions at  $T = 231 T_c \sim 68 \text{ GeV} (\hat{g}/\pi \sim 0.3)$ . More sophisticated PT intensively studied in the literature

- Perturbative expansion has a very poor convergence rate
- Contributions computable in PT only up to finite order



• All these facts call for a non-perturbative study of thermal QCD up to very high T to identify the origin and the magnitude of the various contributions with controlled and improvable errors

#### Renormalization

• Hadronic renormalization scheme is not a viable option because

$$M_{
m hadron} \ll T$$

Accommodating 2 very different scales on a lattice too expensive

- Way to go is the NP renormalization of the coupling:
  - \* Define the renormalized  $g^2$  NP, e.g. SF (GF) couplings ( $L = L_0$ )

$$\left.\frac{\partial \Gamma}{\partial \eta}\right|_{\eta=0} \equiv \frac{12\pi}{\bar{g}_{\rm SF}^2(\mu)}\,, \quad \mu=\frac{1}{L_0}$$

where C and C' depend on  $\eta$ , and  $\Gamma = -\ln[Z]$ 

- $\star$  Define quark masses NP by WIs
- Avoid zero-temperature subtraction in renormalization of fields by adopting shifted boundary conditions, e.g. Equation of State



[Lüscher et al 91]

4/9

#### Renormalization

• Hadronic renormalization scheme is not a viable option because

$$M_{
m hadron} \ll T$$

Accommodating 2 very different scales on a lattice too expensive

- Way to go is the NP renormalization of the coupling:
- ★ For each value of *T*, renormalize thermal QCD by requiring

$$g_{\mathrm{SF}}^2(g_0^2,a\mu)=ar{g}_{\mathrm{SF}}^2(\mu)$$

with  $a\mu \ll 1$  and  $\mu = T\sqrt{2}$ 

\* Last condition fixes the dependence of  $g_0^2$  on *a*, for values of *a* at which  $\mu$  and T are easily accommodated



[Lüscher et al 91]

#### Lattice setup

- Wilson  $(T_0-T_8)$  and Lüscher–Weisz  $(T_9-T_{11})$  actions for gluons
- NP O(a)-improved Wilson quarks
- Four lattice spacings for each T,  $L_0/a = 4, 6, 8$  and 10
- Shifted boundary conditions
- Restriction to zero topology

| - |          |                                             |                     |
|---|----------|---------------------------------------------|---------------------|
|   | T        | $\bar{g}_{\rm SF}^2(\mu = T\sqrt{2})$       | $T \; (\text{GeV})$ |
|   | $T_0$    | 1.01640                                     | 164.6(5.6)          |
|   | $T_1$    | 1.11000                                     | 82.3(2.8)           |
|   | $T_2$    | 1.18446                                     | 51.4(1.7)           |
|   | $T_3$    | 1.26569                                     | 32.8(1.0)           |
|   | $T_4$    | 1.3627                                      | 20.63(63)           |
|   | $T_5$    | 1.4808                                      | 12.77(37)           |
|   | $T_6$    | 1.6173                                      | 8.03(22)            |
|   | $T_7$    | 1.7943                                      | 4.91(13)            |
|   | $T_8$    | 2.0120                                      | 3.040(78)           |
|   |          |                                             |                     |
|   | T        | $\bar{g}_{\mathrm{GF}}^2(\mu = T/\sqrt{2})$ | T (GeV)             |
|   | $T_9$    | 2.7359                                      | 2.833(68)           |
|   | $T_{10}$ | 3.2029                                      | 1.821(39)           |
|   | $T_{11}$ | 3.8643                                      | 1.167(23)           |

• The linear extension of spatial directions is L/a = 288, i.e. 20 < LT < 50. Finite volume effects negligible given the mass gap. Explicitly checked at the highest and lowest temperature

#### Results for mesonic screening masses

• Effective theory + NLO matching predict

$$m_{\mathcal{O}}^{\scriptscriptstyle \mathrm{PT}} = 2\pi T \left(1 + p_2^{\scriptscriptstyle \mathrm{PT}} g^2\right)$$

where  $p_2^{\rm PT}=0.03274$ . In particular  $m_P$  and  $m_v$  are degenerate

• NP Results can be fitted by a quartic polynomial in

$$\frac{1}{\hat{g}^2(T)} \equiv \frac{9}{8\pi^2} \ln \frac{2\pi T}{\Lambda_{\overline{\mathrm{MS}}}} + \frac{4}{9\pi^2} \ln \left( 2 \ln \frac{2\pi T}{\Lambda_{\overline{\mathrm{MS}}}} \right)$$

where for our purpose this is a funct. of T designed to coincide with the  $\overline{\rm MS}$  inverse coupling squared



#### Results for mesonic screening masses

• Effective theory + NLO matching predict

$$m_{\mathcal{O}}^{\scriptscriptstyle \mathrm{PT}} = 2\pi T \left(1 + p_2^{\scriptscriptstyle \mathrm{PT}} g^2\right)$$

where  $p_2^{\rm PT}=0.03274$ . In particular  $m_P$  and  $m_v$  are degenerate

• NP Results can be fitted by a quartic polynomial in

$$\frac{1}{\hat{g}^2(T)} \equiv \frac{9}{8\pi^2} \ln \frac{2\pi T}{\Lambda_{\overline{\mathrm{MS}}}} + \frac{4}{9\pi^2} \ln \left( 2 \ln \frac{2\pi T}{\Lambda_{\overline{\mathrm{MS}}}} \right)$$

where for our purpose this is a funct. of T designed to coincide with the  $\overline{\rm MS}$  inverse coupling squared





### Results for baryonic (nucleon) screening mass

• Effective theory + NLO matching predict

$$m_{N^+}^{\rm \scriptscriptstyle PT} = 3\pi T \left( 1 + q_2^{\rm \scriptscriptstyle PT} g^2 \right)$$

where  $q_2^{\rm PT} = 0.046$ .

• NP Results can be fitted by a quartic polynomial in

$$\frac{1}{\hat{g}^2(T)} \equiv \frac{9}{8\pi^2} \ln \frac{2\pi T}{\Lambda_{\overline{\mathrm{MS}}}} + \frac{4}{9\pi^2} \ln \left( 2 \ln \frac{2\pi T}{\Lambda_{\overline{\mathrm{MS}}}} \right)$$

where for our purpose this is a funct. of T designed to coincide with the  $\overline{\rm MS}$  inverse coupling squared



• PT within 0.5% down to  $T \sim 5 \,\text{GeV}$ , but curvature needed!

#### $N_f = 3$ QCD Equation of State up to very high T

- EoS can be obtained up to very hight T NP with controlled and improvable errors
- In this first computation an accuracy of  $\lesssim 1\%$  has been reached up to  $\mathcal{T}\sim 82~{\rm GeV}$



#### $N_f = 3$ QCD Equation of State up to very high T

- EoS can be obtained up to very hight T NP with controlled and improvable errors
- In this first computation an accuracy of  $\lesssim 1\%$  has been reached up to  $\mathcal{T}\sim 82~{\rm GeV}$



• To compare with PT, if we (assume convergence and) fit the 4 highest temperatures by including an effective (NP) term

$$\frac{s(T)}{T^3} = \frac{95\pi^2}{45} \left\{ 1 + s_2 \hat{g}^2 + s_3 \hat{g}^3 + s_4(\hat{g}) \hat{g}^4 + s_5 \hat{g}^5 + s_6(\hat{g}) \hat{g}^6 + \frac{32q_c}{95(2\pi)^6} \hat{g}^6 \right\}$$

the  $\mathcal{O}(\hat{g}^6)$  is still ~ 45% of the total contribution from interactions at  $T = T_1 \sim 82$  GeV ( $\hat{g}/\pi \sim 1/3$ ). PT clearly still not converging <sub>8/9</sub>

### $N_f = 3$ QCD Equation of State up to very high T

- EoS can be obtained up to very hight T NP with controlled and improvable errors
- In this first computation an accuracy of  $\lesssim 1\%$  has been reached up to  $\mathcal{T}\sim 82~{\rm GeV}$



• To compare with PT, if we (assume convergence and) fit the 4 highest temperatures by including an effective (NP) term

$$\frac{s(T)}{T^3} = \frac{95\pi^2}{45} \left\{ 1 + s_2 \hat{g}^2 + s_3 \hat{g}^3 + s_4(\hat{g}) \hat{g}^4 + s_5 \hat{g}^5 + s_6(\hat{g}) \hat{g}^6 + \frac{32q_c}{95(2\pi)^6} \hat{g}^6 \right\}$$

the  $\mathcal{O}(\hat{g}^6)$  is still ~ 45% of the total contribution from interactions at  $T = T_1 \sim 82$  GeV ( $\hat{g}/\pi \sim 1/3$ ). PT clearly still not converging

#### Conclusions and Outlook

- With today HPC technology and known algorithms is possible to simulate thermal QCD up to very high temperatures
- Systematics due to the use of perturbation theory can be fully removed up to the electroweak scale
- The strategy proposed here opens the way to study many properties of thermal QCD in the high temperature regime:
  - \* Screening masses of mesons and baryons
  - \* Equation of State
  - \* Transport coefficients

\* .....



## **BACKUP SLIDES**

#### Effective field theories at large T: MQCD

• For Physics at energies  $E = O(g_{\rm E}^2)$ , the scalar field can be integrated out, and one is left with Magnetostatic QCD (MQCD)

$$S_{\mathrm{MQCD}} = rac{1}{g_{\mathrm{E}}^2} \int d^3x \left\{ rac{1}{2} \operatorname{Tr} \left[ F_{ij} F_{ij} \right] 
ight\} + \dots$$

- This is a 3D Yang–Mills theory which needs to be solved NP. All dimensionful quantities proportional to appropriate power of  $g_E^2$
- As a result, at asymptotically high T the mass gap developed by thermal QCD is proportional to  $g_{\rm E}^2 = g^2 T + \dots$
- Quarks have very heavy masses  $M = \pi T (1 + \frac{g^2}{6\pi^2} + ...)$ , and can be considered, in first approximation, as static fields

#### Effective field theories at large T: EQCD

• Physics at energies  $E \ll \pi T$  is described by a 3-dimensional effective gauge theory dubbed Electrostatic QCD (EQCD)

$$S_{\rm EQCD} = \frac{1}{g_{\rm E}^2} \int d^3x \left\{ \frac{1}{2} \operatorname{Tr} \left[ F_{ij} F_{ij} \right] + \operatorname{Tr} \left[ (D_j A_0) (D_j A_0) \right] + m_{\rm E}^2 \operatorname{Tr} \left[ A_0^2 \right] \right\} + \dots$$

where the fields are the Matsubara zero-modes of 4D gauge field

- The 4D temporal component  $A_0$  behaves as a 3D scalar field of mass  $m_{\rm E}$  in the adjoint representation of the gauge group
- When the QCD coupling  $g^2$  is small, perturbative matching gives

$$m_{\rm E}^2 = \frac{3}{2}g^2T^2 + \dots$$
 and  $g_{\rm E}^2 = g^2T + \dots$ 

and at asymptotically hight T, three energy scales develop

$$\frac{g_{\rm E}^2}{\pi} \ll m_{\rm E} \ll \pi T$$

#### Renormalization: extra material

- Relate  $g^2(\mu_{
  m hadron})$  to  $M_{
  m hadron}$  NP
- Determine running of  $g^2(\mu)$  NP
- Compute  $g^2(\mu)$  for values of  $\mu$  up to the electroweak scale
- For each value of *T*, renormalize thermal QCD by requiring

$$g_{
m SF}^2(g_0^2,a\mu)=ar{g}_{
m SF}^2(\mu)$$

with  $a\mu \ll 1$  and  $\mu = T\sqrt{2}$ 

- aa  $\frac{a_0}{2}$  $\frac{a_0}{4}$  $\mu_0$  $2\mu_0 4\mu_0 \mu$ [Bruno et al. 17] Schrödinger Funct 0.8 0.6  $(\pi)^{\alpha}$ 0.40.2 0 0.1 10 100  $\mu$ [GeV]
- Last condition fixes the dependence of the bare  $g_0^2$  on a, for values of a at which  $\mu$  and T can be easily accommodated

#### Shifted boundary conditions

• By adopting shifted boundary conditions

[Meyer, LG 11-13]

$$U_{\mu}(x_{0} + L_{0}, \mathbf{x}) = U_{\mu}(x_{0}, \mathbf{x} - L_{0}\boldsymbol{\xi})$$
  

$$\psi(x_{0} + L_{0}, \mathbf{x}) = -\psi(x_{0}, \mathbf{x} - L_{0}\boldsymbol{\xi})$$
  

$$\overline{\psi}(x_{0} + L_{0}, \mathbf{x}) = -\overline{\psi}(x_{0}, \mathbf{x} - L_{0}\boldsymbol{\xi})$$



the entropy density can be computed as

$$s = -rac{L_0 \, (1+ec{\xi^2})^{3/2}}{\xi_k} \, \langle T_{0k} 
angle_{ec{\xi}}$$

and the zero-temperature subtraction is avoided in the EoS

#### Systematics: topology and finite-size effects

• At very high temperature the topological charge distribution is expected to be highly peaked at zero  $[b \sim 9 \text{ for } N_f = 3]$ 

$$P_{\nu} = \frac{1}{\sqrt{2\pi \langle \nu^2 \rangle}} e^{-\frac{\nu^2}{2\langle \nu^2 \rangle}} + \dots, \quad \langle \nu^2 \rangle \propto L^3 m^3 T^{-b}$$

• The contributions from non-zero topological sectors to observables

$$\langle \mathcal{O} 
angle = \sum_{
u} P_{
u} \langle \mathcal{O} 
angle_{
u}$$

are negligible within statistical errors for the volumes considered. Simulations can be safely restricted to the zero topology sector.

- At asymptotically high T thermal QCD has a mass gap proportional to  $g_E^2 = g^2 T + \dots$
- Finite size effects are exponentially small in  $g^2TL$ , and can be made negligible within errors in large enough volumes

#### Screening mass definition



From the two-point correlators  $[\mathcal{O} = \{S, P, V_{\mu}, A_{\mu}\}]$ 

$$C_{\mathcal{O}}(x_3) = a^3 \sum_{x_0, x_1, x_2} \langle \mathcal{O}^a(x) \mathcal{O}^a(0) \rangle$$

screening masses are defined as

$$am_{\mathcal{O}}(x_3) = \operatorname{arcosh}\left[rac{\mathcal{C}_{\mathcal{O}}(x_3+a) + \mathcal{C}_{\mathcal{O}}(x_3-a)}{2 \, \mathcal{C}_{\mathcal{O}}(x_3)}
ight]$$

#### Meson masses: continuum limit



The tree-level improved definitions

$$m_{\mathcal{O}} 
ightarrow m_{\mathcal{O}} - \left[m_{\mathcal{O}}^{\mathrm{free}} - 2\pi T\right]$$

have been extrapolated to the continuum linearly in  $(a/L_0)^2$ 

#### Meson masses: discussion and interpretation

Pseudoscalar mass:

$$\frac{m_P}{2\pi T} = 1 + p_2^{\rm PT} \, \hat{g}^2 + p_3 \, \hat{g}^3 + p_4 \, \hat{g}^4$$

$$p_3=0.0038(22)$$
 and  $p_4=-0.0161(17)$ 

Pseudoscalar-vector mass difference:

$$\frac{(m_V - m_P)}{2\pi T} = s_4 \, \hat{g}^4$$
$$s_4 = 0.00704(14)$$

An effective  $\hat{g}^4$  term explain the difference with PT in both cases over 2 orders of magnitude in T!



#### Comparison with the literature for mesons

