
Non-perturbative thermal QCD at very high
temperatures

Leonardo Giusti

University of Milano-Bicocca & INFN

Collaboration:

Bresciani, Dalla Brida, LG, Harris, Laudicina, Pepe, Rescigno,
JHEP 04 (2022) 034 [2112.05427], PLB 855 (2024) 138799 [2405.04182], and in preparation

ICHEP 2024 - Prague - July 17-24, 2024



Outline

• Non-perturbative (NP) thermal QCD up to very high T: why ?

• Renormalization and shifted boundary conditions: how ?

• Lattice setup

• Results for mesonic and baryonic screening masses

• Preliminary results for the Equation of State

• Conclusions and Outlook

1 / 9



Thermal QCD: relevant scales and effective theories
[Ginsparg 80; Linde 80; Appelquist, Pisarski 81; Braaten, Nieto 96; . . . ]

• The three relevant scales in the problem are:

M = πT+. . .

mE ∝ gT+. . .

g2
E

= g2T + . . .

Fermions [3D NRQCD] and non-zero Matsubara
gluon modes

A0 zero Matsubara gluon modes [3D EQCD]

Ai zero Matsubara gluon modes [3D MQCD]

• Thanks to asymptotic freedom, at asymptotically high T a
hierarchy between the three scales is generated

g2
E

π
� mE � πT ⇐⇒

(g
π

)2
� g

π
� 1

• Perturbation theory developed for high T regime
[See Laine, Vuorinen 17 for a review]

• Contributions from lowest scale must always be computed NP
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Why beyond perturbation theory up to very high T ?

• Perturbative expansion has a
very poor convergence rate

• Contributions computable in
PT only up to finite order

[Kajantie et al. 02; LG, Pepe 17]
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• For the SU(3) YM theory, if we (assume convergence and) fit the
4 highest temperatures by including an effective (NP) term

s(T )

T 3 =
32π2

45

{
1+s2ĝ

2+s3ĝ
3+s4(ĝ)ĝ4+s5ĝ

5+s6(ĝ)ĝ6+
qc

(2π)6 ĝ
6
}

the O(ĝ6) is still ∼ 50% of the total contribution from interactions
at T = 231Tc ∼ 68 GeV (ĝ/π ∼ 0.3). More sophisticated PT
intensively studied in the literature 3 / 9
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• All these facts call for a non-perturbative study of thermal QCD
up to very high T to identify the origin and the magnitude of
the various contributions with controlled and improvable errors
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Renormalization
• Hadronic renormalization scheme is not a viable option because

Mhadron � T

Accommodating 2 very different scales on a lattice too expensive

• Way to go is the NP renormalization of the coupling:

? Define the renormalized g2 NP,
e.g. SF (GF) couplings (L = L0)

∂Γ

∂η

∣∣∣∣∣
η=0
≡ 12π

ḡ2
SF(µ)

, µ =
1
L0

where C and C ′ depend on η,
and Γ = − ln[Z ]

? Define quark masses NP by WIs

[Lüscher et al 91]

• Avoid zero-temperature subtraction in renormalization of fields by
adopting shifted boundary conditions, e.g. Equation of State 4 / 9



Renormalization
• Hadronic renormalization scheme is not a viable option because

Mhadron � T

Accommodating 2 very different scales on a lattice too expensive

• Way to go is the NP renormalization of the coupling:

? For each value of T , renormalize
thermal QCD by requiring

g2
SF(g2

0 , aµ) = ḡ2
SF(µ)

with aµ� 1 and µ = T
√
2

? Last condition fixes the dependence
of g2

0 on a, for values of a at which
µ and T are easily accommodated

[Lüscher et al 91]
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Lattice setup
• Wilson (T0–T8) and Lüscher–Weisz (T9–T11) actions for gluons

• NP O(a)-improved Wilson quarks

• Four lattice spacings for each T ,
L0/a = 4, 6, 8 and 10

• Shifted boundary conditions

• Restriction to zero topology
T ḡ2

GF(µ = T/
p

2) T (GeV)
T9 2.7359 2.833(68)
T10 3.2029 1.821(39)
T11 3.8643 1.167(23)

Table 5: Values of the GF couplings corresponding to the lines of constant physical temper-
ature that we consider.

were the coe�cients c
L/a
i , i = 1, 2, 3, are given in Ref. [50]. The rest of the expression

corresponds to the two-loop critical mass,

am2lp
cr (g2

0, a/L0) =
�
am(0)

cr + �am(0)
cr (a/L0)

�
+
�
am(1)

cr + �am(1)
cr (a/L0)

�
g2
0 + am(2)

cr g4
0 , (39)

where
am(0)

cr = 0 , am(1)
cr = �0.270075349459 , am(2)

cr = �0.039772 , (40)

are the asymptotic coe�cients in the limit L0/a ! 1 while Table 3 contains the coe�cients
due to cuto↵ e↵ects. The interpolated values for cr = 2 amcr + 8 as well as those for csw

obtained from Eq. (39) and Eq. (31) respectively are reported in Table 4 and are indicated

with 
(W )
cr and c

(W )
sw .

B.2 Low temperatures

The lower temperature values T9, T10 and T11 are fixed analogously to the higher ones but
from the gradient flow (GF) coupling. The temperature is fixed by imposing that

T =
1

L0

p
2

=
p

2µ , (41)

where µ is the renormalization scale of the GF coupling ḡ2
GF(µ) defined in a box with spatial

and temporal extensions satisfying LGF = LGF
0 = 1/µ, i.e. L0 = LGF

0 /2.
In order to determine the physical values of the temperature, we start from the result

(cf. Eqs. (15)-(16) and Tables I-II of Ref. [39]),

ḡ2
GF(µhad,1) = 11.31 ) µhad,1 = 196.9(3.2) MeV , (42)

where µhad,1 is inferred from the experimental value of a combination of the pion and kaon
decay constant as for µ0. The value of the temperatures corresponding to the couplings of
interest can then be inferred through the relation,

ln

✓
µ

µhad,1

◆
=

Z ḡGF(µ)

ḡGF(µhad,1)

dg

�GF(g)
, (43)

where

µ
dḡGF(µ)

dµ
= �GF(ḡGF) . (44)

Using the results of Ref. [33], the non-perturbative �-function of the GF coupling can be
parameterized over the range of couplings of interest as (cf. Eq. (2.36) of Ref. [35])

�GF(ḡ) = � ḡ3

P2
n=0 pnḡ2n

, ḡ2 2 [2.1, 11.3] , (45)

19

• The linear extension of spatial directions is L/a = 288, i.e.
20 < LT < 50. Finite volume effects negligible given the mass
gap. Explicitly checked at the highest and lowest temperature
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Results for mesonic screening masses
• Effective theory + NLO matching predict

mPT
O = 2πT (1 + pPT

2 g2)

where pPT
2 = 0.03274. In particular mP and mv are degenerate

• NP Results can be fitted by a quartic
polynomial in

1
ĝ2(T)

≡ 9
8π2 ln

2πT
ΛMS

+
4

9π2 ln

(
2 ln

2πT
ΛMS

)

where for our purpose this is a funct.
of T designed to coincide with the
MS inverse coupling squared
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ĝ2(T)

≡ 9
8π2 ln

2πT
ΛMS

+
4

9π2 ln

(
2 ln

2πT
ΛMS

)

where for our purpose this is a funct.
of T designed to coincide with the
MS inverse coupling squared

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7

1 GeV2 GeV10 GeV80 GeV

(m
V
−
m
P
)/
2π
T

ĝ4

• Masses non-degenerate even at electroweak scale!
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Results for baryonic (nucleon) screening mass

• Effective theory + NLO matching predict

mPT
N+ = 3πT (1 + qPT

2 g2)

where qPT
2 = 0.046.

• NP Results can be fitted by a quartic
polynomial in

1
ĝ2(T)

≡ 9
8π2 ln

2πT
ΛMS

+
4

9π2 ln

(
2 ln

2πT
ΛMS

)

where for our purpose this is a funct.
of T designed to coincide with the
MS inverse coupling squared
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• PT within 0.5% down toT ∼5GeV, but curvature needed!
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Nf = 3 QCD Equation of State up to very high T

• EoS can be obtained up to very
hight T NP with controlled and
improvable errors

• In this first computation an
accuracy of . 1% has been
reached up to T ∼ 82 GeV

preliminary
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• To compare with PT, if we (assume convergence and) fit the
4 highest temperatures by including an effective (NP) term

s(T )

T 3 =
95π2

45

{
1+s2ĝ

2+s3ĝ
3+s4(ĝ)ĝ4+s5ĝ

5+s6(ĝ)ĝ6+
32qc

95(2π)6 ĝ
6
}

the O(ĝ6) is still ∼ 45% of the total contribution from interactions
at T = T1 ∼ 82 GeV (ĝ/π ∼ 1/3). PT clearly still not converging 8 / 9
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Conclusions and Outlook

• With today HPC technology and known algorithms is possible to
simulate thermal QCD up to very high temperatures

• Systematics due to the use of perturbation theory can be fully
removed up to the electroweak scale

• The strategy proposed here opens the way to study many
properties of thermal QCD in the high temperature regime:

? Screening masses of mesons and baryons

? Equation of State

? Transport coefficients

? .....
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Effective field theories at large T : MQCD

• For Physics at energies E = O(g2
E

), the scalar field can be
integrated out, and one is left with Magnetostatic QCD (MQCD)

SMQCD =
1
g2

E

∫
d3x

{
1
2

Tr [FijFij ]

}
+ . . .

• This is a 3D Yang–Mills theory which needs to be solved NP. All
dimensionful quantities proportional to appropriate power of g2

E

• As a result, at asymptotically high T the mass gap developed by
thermal QCD is proportional to g2

E
= g2T + . . .

• Quarks have very heavy masses M = πT (1 + g2

6π2 + . . . ), and can
be considered, in first approximation, as static fields



Effective field theories at large T : EQCD
• Physics at energies E � πT is described by a 3-dimensional
effective gauge theory dubbed Electrostatic QCD (EQCD)

SEQCD=
1
g2

E

∫
d3x

{
1
2

Tr [FijFij ] + Tr [(DjA0)(DjA0)] + m2
E

Tr
[
A2

0
]}

+. . .

where the fields are the Matsubara zero-modes of 4D gauge field

• The 4D temporal component A0 behaves as a 3D scalar field of
mass mE in the adjoint representation of the gauge group

• When the QCD coupling g2 is small, perturbative matching gives

m2
E

=
3
2
g2T 2 + . . . and g2

E
= g2T + . . .

and at asymptotically hight T, three energy scales develop

g2
E

π
� mE � πT



Renormalization: extra material

• Relate g2(µhadron) to Mhadron NP

• Determine running of g2(µ) NP

• Compute g2(µ) for values of µ
up to the electroweak scale

• For each value of T , renormalize
thermal QCD by requiring

g2
SF(g2

0 , aµ) = ḡ2
SF(µ)

with aµ� 1 and µ = T
√
2
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[Bruno et al. 17]
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• Last condition fixes the dependence of the bare g2
0 on a, for

values of a at which µ and T can be easily accommodated



Shifted boundary conditions

• By adopting shifted boundary conditions

Uµ(x0 + L0, x) = Uµ(x0, x − L0ξ)

ψ(x0 + L0, x) = −ψ(x0, x − L0ξ)

ψ(x0 + L0, x) = −ψ(x0, x − L0ξ)

[Meyer, LG 11-13]

the entropy density can be computed as

s = −L0 (1 + ~ξ2)3/2

ξk
〈T0k〉~ξ

and the zero-temperature subtraction is avoided in the EoS



Systematics: topology and finite-size effects

• At very high temperature the topological charge distribution is
expected to be highly peaked at zero [b ∼ 9 for Nf = 3]

Pν =
1√

2π<ν2>
e
− ν2

2<ν2> + . . . , <ν2>∝ L3m3T−b

• The contributions from non-zero topological sectors to observables

〈O〉 =
∑

ν

Pν〈O〉ν

are negligible within statistical errors for the volumes considered.
Simulations can be safely restricted to the zero topology sector.

• At asymptotically high T thermal QCD has a mass gap
proportional to g2

E
= g2T + . . .

• Finite size effects are exponentially small in g2TL, and can
be made negligible within errors in large enough volumes
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Screening mass definition
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From the two-point correlators [O = {S ,P,Vµ,Aµ}]

CO(x3) = a3
∑

x0,x1,x2

〈Oa(x)Oa(0)〉

screening masses are defined as

amO(x3) = arcosh
[
CO(x3 + a) + CO(x3 − a)

2CO(x3)

]



Meson masses: continuum limit
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The tree-level improved definitions

mO → mO −
[
mfree
O − 2πT

]
have been extrapolated to the continuum linearly in (a/L0)2



Meson masses: discussion and interpretation

Pseudoscalar mass:

mP

2πT
= 1 + pPT

2 ĝ2 + p3 ĝ
3 + p4 ĝ

4

p3=0.0038(22) and p4=−0.0161(17)

Pseudoscalar-vector mass difference:

(mV −mP)

2πT
= s4 ĝ

4

s4 = 0.00704(14)

An effective ĝ4 term explain the
difference with PT in both cases
over 2 orders of magnitude in T !
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Comparison with the literature for mesons


