Path integral treatment of coherence effects in charmonium production in nuclear ultra-peripheral collisions

Jaroslava Óbertová

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

and

Ján Nem£ík

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

ICHEP24, 18 - 24 July, 2024, Prague, Czech Republic

- heavy quarkonia are important tool for studying dense matter created in heavy-ion collisions and QCD dynamics
- ultra-peripheral collisions (UPC) are dominant source of heavy quarkonia and provide unique acces to photon-nuclear interactions
- description of coherent quarkonium photoproduction $\gamma^* A \to V\! A$ within the light-front (LF) color dipole approach

B.Z. Kopeliovich et al., PRD 107 (2023) 054005 M. Krelina, J. Nemchik, PRD 102 (2020) 114033

- this talk proper treatment of finite coherence length as well as gluon shadowing via Green's function approach in coherent production of J/ψ and ψ^\prime
	- J. Obertova, J. Nemchik, arXiv:2407.02219, submitted to PRD (2024)
- the amplitude of a diffractive process is treated as elastic scattering of a $\overline{Q} \overline{Q}$ fluctuation of the incident particle
- possible expansion of a projectile into the Fock states, e.g. photon

$$
|\gamma\rangle = |\bar{Q}Q\rangle + |\bar{Q}Qg\rangle + |\bar{Q}Q2g\rangle + ...
$$

• coherence length defined for each Fock state $l_{\mathcal{C}}^{\bar{Q}Q}=\frac{2k}{M_{\bar{Q}Q}^2+Q^2}\gg l_{\mathcal{C}}^{\bar{Q}Qg}=\frac{2k}{M_{\bar{Q}Qg}^2+Q^2}\gg l_{\mathcal{C}}^{\bar{Q}Q2g}\gg ...$

• shadowing phenomena \Rightarrow destructive interference of amplitudes related to interactions on different bound nucleons

$$
\bullet\ \textit{l}^{\bar{Q}Q}_{c} \Rightarrow \text{quark shadowing, } \textit{l}^{\bar{Q}Qg}_{c} \Rightarrow \text{gluon shadowing}
$$

Quarkonium photoproduction cross-section in UPC

• cross section for photoproduction of a vector meson in the rest frame of the target nucleus A:

$$
k\frac{d\sigma}{dk}=\int d^2b_A\int d^2b\,n_\gamma(k,\vec{b}-\vec{b}_A,y)\frac{d^2\sigma_A(b,s)}{d^2b}+\{y\to -y\},\,
$$

 $\vec{b}_A > 2R_A \Rightarrow$ relative impact parameter of the collision $\vec{b} \Rightarrow$ impact parameter of photon-nucleon collision relative to the center of one of the nuclei

photon flux $n(k,\vec{b})$ induced by the projectile nucleus within the one-photon-exchange

$$
n_{\gamma}(k, \vec{b}) = \frac{\alpha_{em} Z^2 k^2}{\pi^2 \gamma^2} \left[K_1^2 \left(\frac{bk}{\gamma} \right) + \frac{1}{\gamma^2} K_0^2 \left(\frac{bk}{\gamma} \right) \right],
$$

the Lorenz factor gamma $\gamma=2\gamma_{\rm col}^2-1,$ where $\gamma_{\rm col}=\frac{\sqrt{s_{\rm M}}}{2M_{\rm A}}$ $2M_N$

Cross section for coherent quarkonia production

- \bullet In UPC at LHC the photon energy is sufficiently high at $y = 0$ \Rightarrow l_cQ \Diamond \gg R_A
- coherent (elastic) cross section for quarkonia production $\gamma^* A \to V\hspace{-0.1cm}A$

$$
\frac{d^2\sigma_A(b,s)}{d^2b}\big|_{l_c^{\bar{Q}Q} \gg R_A} = \Big| \int d^2r \int_0^1 d\alpha \Psi^*_V(\vec{r},\alpha) \left(1 - \exp\left[-\frac{1}{2}\sigma_{\bar{q}q}(r,s)T_A(b)\right]\right) \Psi_{\gamma^*}(\vec{r},\alpha)\Big|^2
$$

where $\, T_A(b) = \int_{-\infty}^\infty d z \rho_A(b,z)$ is the nuclear thickness function and c.m energy $s = M_V \sqrt{s_N} \exp(y)$

 \bullet "frozen" (eikonal) approximation - transverse separation of the $|QQ\rangle$ Fock state does not change during propagation through the medium

Correction for finite coherence length $I_c^{\bar{Q}Q}$ c

- forward or backward rapidities at LHC or RHIC \Rightarrow coherence length becomes too short (/ $\bar{\zeta}^{Q}_{c}\sim$ 3 $-$ 6 fm \lesssim $R_{A})$ at least for one of the colliding nuclei
- correction for finite coherence length using form factors

$$
\frac{d^2\sigma_A(b,s)}{d^2b}=\frac{d^2\sigma_A(b,s)}{d^2b}\big|_{l_c^{\bar{Q}Q}\gg R_A}\cdot F^{coh}(s,l_c(s))
$$

 \bullet form factor calculated using Green's function technique \Rightarrow harmonic-oscillator (HO) VM wave function $+$ quadratic form for the $dipole cross section = analytic form of the Green's function$

J. Nemchik et al., PRD 107 (2023) 054005

- gluon shadowing (GS) = another source of nuclear suppression, leading twist effect
- GS corresponds to higher Fock components of the photon $|\bar{Q}Qg\rangle, |\bar{Q}Q2g\rangle, ...$
- at sufficiently high energies $\mathit{l}_{c}^{\bar{Q}Qg} \gg 2$ fm \Rightarrow intensity of gluon radiation reduced compared to Bethe-Heitler regime \Rightarrow gluon shadowing
- transverse size of $\bar{Q}Q g$ dipole fluctuates during propagation through the nucleus \Rightarrow GS calculated using the Green's function formalism B.Z. Kopeliovich et al., PRD 105 (2022) 054023

The Green's function approach

coherent cross section for quarkonia production $\gamma^* A \to V\!A$

$$
\frac{d^2\sigma_A(b,s)}{d^2b} = |\int_{-\infty}^{\infty} dz_1 \rho_A(b,z_1) H_1(s,b,z_1)|^2,
$$

where $\rho_A(b,z_1)$ is the nuclear density distribution and

$$
H_1(s, b, z_1) = \int_0^1 d\alpha \int d^2r_1 \int d^2r_2 \psi_V^*(\vec{r_2}, \alpha) G_{Q\bar{Q}}(z_2, \vec{r_2}; z_1, \vec{r_1}) \sigma_{Q\bar{Q}}(\vec{r_1}, s) \psi_\gamma(\vec{r_1}, \alpha)|_{z_2 \to \infty}.
$$

- $G_{\Omega\bar{O}}(z_2, \vec{r}_2; z_1, \vec{r}_1)$ Green's function describes the propagation of $\bar{Q}Q$ fluctuation throught the medium
- $\sigma_{\bar{Q}Q}(r,s)$ dipole cross section, we used KST (B. Kopeliovich et al., PRD62 (2000) 054022) and GBW (K. Golec-Biernat et al., JHEP 03 (2018) 102) models
- $\psi_V^*(\vec{\kappa},\alpha)$ VM wave function, $\psi_\gamma(\vec{\kappa},\alpha)$ photon wave function $\vec r$ is transverse separation of $Q\bar Q$ pair, $\alpha=\frac{p_Q^+}{p_\gamma^+}$ - fraction of photon momentum carried by quark

Schrödinger equation for the Green's function

evolution equation for the Green's function in LF frame

$$
i\frac{d}{dz_1}G_{Q\bar{Q}}(z_2,\vec{r}_2;z_1,\vec{r}_1) = \left[\frac{\epsilon^2 - \Delta_{r_2}}{2k\alpha(1-\alpha)} + V_{\bar{Q}Q}(z_2;\vec{r}_2,\alpha)\right]G_{Q\bar{Q}}(z_2,\vec{r}_2;z_1,\vec{r}_1)
$$
\n(1)

where $\epsilon=m_Q^2+\alpha(1-\alpha)Q^2$ and k is the photon energy

- \bullet $V_{\bar{Q}Q}(z; \vec{r_2}, \alpha)$ complex potential in the light-front frame \blacksquare Im $V_{\bar{Q}Q}(z; \vec{r}_2, \alpha) = -i \frac{\sigma_{\bar{q}q}}{2} \rho_A(b, z)$
- analytic form of Re $V_{\bar{Q}Q}(z; \vec{r}_2, \alpha)$ known only for HO potential
- \bullet other potential models BT (W. Buchmuller et al., PRD 24 (1981) 132), POW (A. Martin, PLB 93 (1980) 338) \Rightarrow boost of the $V_{\bar{Q}Q}(\rho)$ to the light-front frame + numerical solution of Eq. (1) (*J. Nemchik, PRC 68 (2003) 035206)*

Re $V_{\bar{Q}Q}$ in the light-front frame

- \bullet we know the LF VM wave function $\Psi_V(\vec{r}, \alpha)$ for any rest frame $\bar{Q}Q$ potential
- derivation of Re $V_{\bar{Q}Q}(z; \vec{r}, \alpha)$ from LF Schrödinger equation

$$
\left(\frac{A^2(\alpha)-\Delta}{2k\alpha(1-\alpha)} + \text{Re}V_{\bar{Q}Q}(z;\vec{r},\alpha)\right)\Psi_V(\vec{r},\alpha) = E_{LF}\Psi_V(\vec{r},\alpha)
$$

$$
\downarrow
$$

$$
\text{Re}V_{\bar{Q}Q}^*(z;\vec{r},\alpha) = \text{Re}V_{\bar{Q}Q}(z;\vec{r},\alpha) + \frac{A^2(\alpha)}{2k\alpha(1-\alpha)} = E_{LF} + \frac{1}{\Psi_V(r,\alpha)}\frac{\Delta\Psi_V(r,\alpha)}{2k\alpha(1-\alpha)}
$$

- we assume that $E_{LF} = E_{rest} \frac{m_Q 4\alpha(1-\alpha)}{2k_Q(1-\alpha)}$ 2k $\alpha(1-\alpha)$
- shift $A^2(\alpha)$ determined from the non-relativistic limit $(\vec{r}\rightarrow\rho,\alpha\rightarrow0.5)$

Fig.1: The impact of Re $V_{\Omega\overline{Q}}$ on rapidity distribution $d\sigma/dy$ for coherent J/ψ (left panel) and ψ' (right panel) production in UPC at c.m. collision energy $\sqrt{s_N} = 200$ GeV. Values of $d\sigma/dy$ are calculated within the Green's function formalism adopting the BT Q - \bar{Q} interaction potential and KST model for dipole cross section. The data from STAR and PHENIX collaborations are shown for comparison.

Fig.2: Rapidity distribution of coherent cross section for photoproduction of J/ψ in UPC $\sqrt{s_N} = 5.5$ TeV. Comparison of cross section calculated with eikonal formula (dotted line) and with the Green's function formalism $+$ GS (solid line).

Fig.3: Rapidity distribution of coherent cross section for photoproduction of J/ψ (left) $\frac{1}{2}$ is ... Rapidity distribution of conerent cross section for photoproduction of $\frac{1}{2}$ (reft) and ψ' (right) in UPC at $\sqrt{s_N} = 200$ GeV. Calculations performed using the POW and BT potentials with GBW and KST models for the dipole cross section. The data from STAR and PHENIX collaborations are shown for comparison.

Fig.4: Rapidity distribution of coherent cross section for photoproduction of J/ψ (left) $\frac{1}{2}$ is. Replatly distribution of contremt cross section for photoproduction or $\frac{1}{2}$ (iert) and ψ' (right) in UPC at $\sqrt{s_N} = 2.76$ TeV. Calculations performed using the POW and BT potentials with GBW and KST models for the dipole cross section. The data from ALICE and CMS collaborations are shown for comparison.

Fig.5: Rapidity distribution of coherent cross section for photoproduction of J/ψ (left) and ψ' (right) in UPC at $\sqrt{s_N} = 5.02$ TeV. Calculations performed using the POW and BT potentials with GBW and KST models for the dipole cross section. The data from ALICE, CMS and LHCb collaborations are shown for comparison.

Coherent electroproduction of J/ψ and ψ' at EIC energies

$$
R_A^{coh} = \frac{\sigma_{\gamma^* A \to J/\psi A}}{A \sigma_{\gamma^* N \to J/\psi N}}
$$

Fig.6: Ratios R_A^{coh} for the J/ψ (left) and ψ' (right) coherent electroproduction on the gold target as a function of c.m. energy W at several fixed values of the photon virtuality $Q^2 = 0$, 5, 20 and 50 GeV².

Conclusions

o study of coherent photoproduction of heavy quarkonia within LF color dipole model using the Green's function approach

J. Obertova, J. Nemchik, arXiv:2407.02219, submitted to PRD

- proposed procedure for obtaining Re $V_{\bar{O}O}(z, \vec{r}, \alpha)$ in the LF frame for any $\bar{Q} - Q$ potential model
- **e** effects of quantum coherence included in the calculations:
	- reduction of coherence length for $|QQ\rangle$ Fock state
	- ► gluon shadowing for $|\bar{Q}Qg\rangle$ state
- predictions for rapidity distributions for coherent J/ψ and ψ' photoproduction are in good agreement with data
- predictions for $\mathit{R}_{\mathcal{A}}^{coh}$ for electroproduction of J/ψ and ψ' manifest the effects of reduced coherence length and gluon shadowing and can be verified by future measurements at EIC

Thank you for your attention!

Back-up slides

Back-up

Fig.7: Present calculations based on path integral technique (solid lines) compared with our previous results from Ref. [1] (dashed lines).

[1] J. Nemchik et al., PRD 107 (2023) 054005