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Introduction

@ heavy quarkonia are important tool for studying dense matter created
in heavy-ion collisions and QCD dynamics

@ ultra-peripheral collisions (UPC) are dominant source of heavy
quarkonia and provide unique acces to photon-nuclear interactions

@ description of coherent quarkonium photoproduction v*A — VA within
the light-front (LF) color dipole approach

B.Z. Kopeliovich et al., PRD 107 (2023) 054005
M. Krelina, J. Nemchik, PRD 102 (2020) 114033

o this talk - proper treatment of finite coherence length as well as gluon
shadowing via Green's function approach in coherent production of

J/1 and ¢/

J. Obertova, J. Nemchik, arXiv:2407.02219, submitted to PRD (2024)



Light-front color dipole approach

o the amplitude of a diffractive process is treated as elastic scattering of
a QQ fluctuation of the incident particle

@ possible expansion of a projectile into the Fock states, e.g. photon

) =1QQ) +|QQg) + 1QQ2g) + ...
o coherence length defined for each Fock state
QQ _ 2k QQe _ 2k QQ2g
199 = o > %8 = Ve > ¢ > .
e shadowing phenomena = destructive interference of amplitudes
related to interactions on different bound nucleons

o /99 = quark shadowing, 199 — gluon shadowing



Quarkonium photoproduction cross-section in UPC

@ cross section for photoproduction of a vector meson in the rest frame
of the target nucleus A:

d?oa(b,
/dsz/d2b”v (k,b—ba,y) 0;2(,3 ) +{y = -y}

ba > 2Ra = relative impact parameter of the collision
b = impact parameter of photon-nucleon collision relative to the
center of one of the nuclei

e photon flux n(k, E) induced by the projectile nucleus within the
one-photon-exchange

L emZ?K2 [, (bK\ 1, [ bk
”w(kab)zT,yz Ki £l +¥Ko )

the Lorenz factor gamma v = 272, — 1, where y¢o = 2‘/,\;7’,‘\’/




Cross section for coherent quarkonia production

@ In UPC at LHC the photon energy is sufficiently high at y =0
= 199 > R,

@ coherent (elastic) cross section for quarkonia production v*A — VA

d?oa(b,s) 1 . 1 T
T‘/?Q>>RA = ‘/dzr/o daWy (7, a) (1 — exp [fiaqq(r, s)TA(b)}> W« (F, a)‘

where Ta(b) = [*°_dzpa(b, z) is the nuclear thickness function and c.m energy
s = My /sy exp(y)

o "frozen" (eikonal) approximation - transverse separation of the |QQ)
Fock state does not change during propagation through the medium



Correction for finite coherence length IC@Q

e forward or backward rapidities at LHC or RHIC = coherence length
becomes too short (/99 ~ 3 — 6 fm < Ry) at least for one of the
colliding nuclei

@ correction for finite coherence length using form factors

d2aA(b, S) i d2UA(b, S) .
d2b - d2b ‘/CQQ>>RA

- Feh(s, I.(s))

@ form factor calculated using Green's function technique =
harmonic-oscillator (HO) VM wave function + quadratic form for the
dipole cross section = analytic form of the Green's function
J. Nemchik et al., PRD 107 (2023) 054005



Gluon shadowing

@ gluon shadowing (GS) = another source of nuclear suppression,
leading twist effect

@ GS corresponds to higher Fock components of the photon

1QQg),|QQ2g), ...

e at sufficiently high energies 1998 > 2 fm = intensity of gluon
radiation reduced compared to Bethe-Heitler regime = gluon
shadowing

e transverse size of QQ — g dipole fluctuates during propagation

through the nucleus = GS calculated using the Green's function
formalism B.Z. Kopeliovich et al., PRD 105 (2022) 054023



The Green's function approach

@ coherent cross section for quarkonia production v*A — VA

d?ca(b,s)

o0
25 |Lw dz1pa(b, z1)Hi(s, b, z1) 2,

where pa(b, z1) is the nuclear density distribution and
1

H1(S,b,21):/ dOé/dzrl/dzrz¢;(67a)GQQ(227FZFZL’?I)O—QQ(?lvs)w’y(Flva)‘Zz*)OO'
0

° GQQ(ZQ, ;71,1 ) - Green's function describes the propagation of QQ
fluctuation throught the medium

® 050(r,s) - dipole cross section, we used KST (8. Kopeliovich et al., PRD62
(2000) 054022) and GBW (K. Golec-Biernat et al., JHEP 03 (2018) 102) models
e y,(r,a) - VM wave function, 1,(r, ) - photon wave function

Y

e . = . P, . .

F'is transverse separation of QQ pair, a = p—$ - fraction of photon momentum carried by
Y

quark



Schrédinger equation for the Green's function

@ evolution equation for the Green's function in LF frame

. d . N e2— A, . . N
’dleo@(Zz,rz;n,n): erV@Q(Zz:fz»a) Goo(22, 12321, T

)
1)

=

—~~

where e = m? + a(1 — @)@ and k is the photon energy
@ Vj5o(z: 2, ) - complex potential in the light-front frame
> ImVpo(z: 72, 0) = —i%2pa(b, 2)
@ analytic form of ReVj4(z; 72, a) known only for HO potential

@ other potential models - BT (W. Buchmuller et al., PRD 24 (1981) 132), POW (A.
Martin, PLB 93 (1980) 338) = boost of the Vi54(p) to the light-front frame +
numerical solution of Eq.(1) (J. Nemchik, PRC 68 (2003) 035206)



ReVgg in the light-front frame

@ we know the LF VM wave function W/(r, «) for any rest frame QQ
potential

o derivation of ReV54(z; 7, ) from LF Schrddinger equation

A(a) — A . . .
<() +ReVgo(zi 7, a)> V(7 a) = ELrWy (7 a)

2ka(l — «)
\
A2(a) 1 AVy(r,a)
ReV3o(2i 7, 0) = ReVio(zi 7)o — = E ’
eVao(zifa) =ReVaq(zi )5 =y = BFt g (v a) 2ka(1 — a)
@ we assume that E;F = Erest%f:g)

o shift A%(a) determined from the non-relativistic limit (7 — p, @ — 0.5)
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Coherent J/1) and ¢’ photoproduction in UPC
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Fig.1: The impact of ReV,g on rapidity distribution do/dy for coherent J/4 (left
panel) and ¢’ (right panel) production in UPC at c.m. collision energy /sy = 200 GeV.
Values of do/dy are calculated within the Green’s function formalism adopting the BT
Q-Q interaction potential and KST model for dipole cross section. The data from STAR
and PHENIX collaborations are shown for comparison.
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Coherent J/1) and ¢’ photoproduction in UPC

gluon shadowing
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Fig.2: Rapidity distribution of coherent cross section for photoproduction of J/+ in UPC
at /sy = 5.5 TeV. Comparison of cross section calculated with eikonal formula (dotted
line) and with the Green's function formalism + GS (solid line).
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Coherent J/1) and ¢’ photoproduction in UPC

do/dy (ub)

Fig.3: Rapidity distribution of coherent cross section for photoproduction of J/1 (left)
and ¢’ (right) in UPC at /sy = 200 GeV. Calculations performed using the POW and
BT potentials with GBW and KST models for the dipole cross section. The data from
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STAR and PHENIX collaborations are shown for comparison.
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Coherent J/1) and ¢’ photoproduction in UPC
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Fig.4: Rapidity distribution of coherent cross section for photoproduction of J/1 (left)
and ¢’ (right) in UPC at /sy = 2.76 TeV. Calculations performed using the POW and
BT potentials with GBW and KST models for the dipole cross section. The data from
ALICE and CMS collaborations are shown for comparison.
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Coherent J/1) and ¢’ photoproduction in UPC
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Fig.5: Rapidity distribution of coherent cross section for photoproduction of J/1 (left)
and ¢’ (right) in UPC at /sy = 5.02 TeV. Calculations performed using the POW and
BT potentials with GBW and KST models for the dipole cross section. The data from
ALICE, CMS and LHCb collaborations are shown for comparison.
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Coherent electroproduction of J/v and v’ at EIC energies
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Fig.6: Ratios R" for the J/1 (left) and 1’ (right) coherent electroproduction on the
gold target as a function of c.m. energy W at several fixed values of the photon
virtuality Q%> =0, 5, 20 and 50 GeV?.
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Conclusions

@ study of coherent photoproduction of heavy quarkonia within LF color
dipole model using the Green's function approach
J. Obertova, J. Nemchik, arXiv:2407.02219, submitted to PRD

@ proposed procedure for obtaining ReV5 (2, ;) in the LF frame for
any @ — Q potential model
o effects of quantum coherence included in the calculations:

» reduction of coherence length for |QQ) Fock state
» gluon shadowing for |@Qg> state

e predictions for rapidity distributions for coherent J/v and 1’
photoproduction are in good agreement with data

@ predictions for Rj"h for electroproduction of J/1) and )’ manifest the
effects of reduced coherence length and gluon shadowing and can be
verified by future measurements at EIC

Thank you for your attention!
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Back-up slides
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Back-up
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Fig.7: Present calculations based on path integral technique (solid lines) compared with
our previous results from Ref. [1] (dashed lines).

[1] J. Nemchik et al., PRD 107 (2023) 054005



