

SMRD

Vall MRD

Downstream ECal

1

UA1 Magnet Yoke

10.6 Gerie

· 5° ° 0.9

-PAAC

E = 1.1 GeV

on-axis

Neutrino Cross-Section Results From T2K

Daniel Cherdack, University of Houston on behalf of the T2K Collaboration

ICHEP 2024, Prague CZ, July 17 - 24, 2024

ERN

~ 500 Members, 74 Institutions, 15 countries

Å

TZR Near Detector: ND280 Upgrade

Near Detector: ND280 Upgrade

X-Section Models & Uncertainties

T2K

75 Cross Section Parameters Mostly related to QE Separate C & O parameters Fermi motion Binding/removal energy [Ven 140 [Me] 140 [Me] 120 2D Spectral Function (12 parameters) 100 Pauli Blocking 80 60 FSI: lepton kinematics 2p2h: nn vs np pairs 100 NC/CC π production ratios (GeV) NEUT, Carbon NEUT, CCQE P p-shell T2K flux on Carbon 5000 15000 4000 12500 3000 10000 2000 7500 s-shell 5000

July 17 – 24, 2024

30 40 Emiss [MeV

pre-FSI nucleon momentum

Prague

UNIVERS

T2 CC ν_{μ} 0 π : CH vs H₂0 in μ Kinematics **H** UNIVERSITY OF HOUSTON

Transverse Kinematic Imbalance

ZR Transverse Kinematic Imbalance

HOUSTON

HOUSTON

Most Recent Result: NC 1\pi^+

0.9

0.8

-0.7

-0.6

-0.5

-0.4

-0.3

0.2

0.1

- The primary physics mission is the measurement of ν_e -appearance and ν_{μ} -disappearance in the Super-Kamiokande detector to constrain the parameters of the PMNS matrix.
- A robust program of systematic uncertainty estimation and constraint is performed using a Near Detector complex.
- The Near Detector complex also has a rich physics program of ν cross section physics.
- This program supports model and systematic development in T2K and other experiments.
- A set of T2K cross section physics measurements was presented:
 - Measurements of μ kinematics on CH and H₂0 for CC v_{μ} 0 π interactions.
 - Explorations of the hadronic system using Transverse Kinematic Imbalance (CC v_{μ} 0π and $1\pi^{+}$)
 - The use of multiple detector exposed to different fluxes to elucidate energy dependence.
 - The CC v_e inclusive and $1\pi^+$ cross sections.
 - The CC v_{μ}/v_{μ} coherent $1\pi^+$ cross section.
 - The NC $1\pi^+$ cross section.
 - The CC v_{μ} 1K⁺ cross section.
- We continue to make progress on understanding the nuclear effects and their impacts energy reconstruction.

Thank you for your attention.

Backup Slides

Accumulated POT ($\times 10^{20}$)

- Relatively pure $\nu_{\mu} / \overline{\nu}_{\mu}$ beam
 - Intrinsic $v_e / \overline{v}_e < 1\%$
 - $\nu_{\mu} \rightarrow \overline{\nu}_{\mu}$: invert horn current
 - FHC: ν_{μ} dominant
 - RHC: $\overline{\nu}_{\mu}$ dominant
- Beam closely monitored
- NA61/SHINE Hadron production measurement program
- Recent power upgrade

TZR Far Detector: Super-Kamiokande

CC0 π : CH vs H₂O in μ Kinematics

Generator	result	Total χ^2 (shape only)	χ^2 w/o last $\cos\theta_{\mu}$ bin	only O χ^2	only C χ^2	O/C ratio χ^2
		(ndof = 58)	(ndof = 50)	(ndof = 29)	(ndof = 29)	(ndof = 29)
NEUT 5.4.1 LFG	reg.	44.8 (58.6)	17.9 (21.1)	26.0(34.5)	15.2(20.1)	30.8
	unreg.	44.4(62.3)	17.3(22.5)	26.4(39.1)	14.0(19.4)	30.6
NEUT $5.4.0 \text{ SF}$	reg.	111.0(156.8)	45.3(69.0)	50.0(77.6)	40.1 (58.3)	31.7
	unreg.	116.8(166.7)	45.1(70.1)	53.7(86.5)	38.6(56.2)	32.2
NuWro 18.2 LFG	reg.	64.7(83.7)	21.0(30.5)	31.9(45.0)	23.5(31.5)	33.1
	unreg.	66.8(88.7)	21.1 (32.1)	32.9(49.9)	22.6(30.6)	33.5
NuWro $18.2 \ SF$	reg.	114.5(180.1)	50.2 (80.9)	$50.1 \ (86.1)$	44.8(70.3)	34.2
	unreg.	119.2(189.0)	48.7(80.9)	52.7(94.8)	42.6(67.4)	33.9
Genie 3 LFG hN	reg.	48.9(58.5)	22.3(24.6)	24.9(32.1)	18.4(22.3)	33.5
	unreg.	46.6(60.0)	20.1 (23.8)	24.7(35.6)	16.3(20.4)	34.0
Genie 3 LFG hA	reg.	55.4(62.0)	22.9(25.5)	27.8(34.3)	19.8(22.3)	32.3
	unreg.	52.9(62.0)	21.0(24.5)	27.7(37.0)	17.7(20.4)	32.6
Genie 3 SuSAv2	reg.	$103.5\ (105.4)$	39.0(44.7)	50.6(57.3)	35.8(36.8)	29.8
	unreg.	110.3(111.3)	40.3 (45.6)	55.4(62.8)	35.1 (35.5)	30.1
RMF (1p1h)	reg.	90.6 (97.5)	48.2(60.5)	31.4(37.8)	43.9(51.3)	31.3
+ SuSAv2 (2p2h)	unreg.	95.8(102.2)	49.3(60.7)	34.0(42.1)	41.9(48.1)	30.7
GiBUU	reg.	112.7(117.0)	47.2(50.6)	46.8(58.0)	46.6(46.1)	39.3
	unreg.	107.5(112.2)	41.7 (46.8)	43.5(56.0)	41.0(41.2)	37.0
Phys.Rev.D 98 (2018) 3, 032003						