¹ Bound state basics

"The notion of the quantum state … seems to fade from view when doing QFT." A.S. Blum, Stud. Hist. Phil. Sci. B60 (2017) 46 [2011.05908]

Bound states are central in the SM QED atoms, QCD hadrons

But they are not found in QFT textbooks. *Cf*. the *S*-matrix (the Interaction Picture).

2

Scattering amplitudes vs. Bound states

The perturbative *S*-matrix expands around $\mathcal{O}(\alpha^0)$ (free) states. Schrödinger equation, Bethe-Salpeter equation, ...

-
- Atoms are perturbed around initial bound states with $\mathcal{O}(\alpha^\infty)$ wave functions:
	- may be shuffled from the initial state Caswell & Lepage (1978)
	- - \implies Atoms may be considered "non-perturbative"
- Positronium hyperfine splitting $\Delta E = M({}^3S_1) M({}^1S_0)$ is given by a power expansion in *S*1) − *M*(1 S_0) is given by a power expansion in α
	- 1367 ⁶⁴⁸ [−] ⁵¹⁹⁷ 3456 $\pi^2 + ($ 221 144 $\pi^2 +$ $\frac{1}{2}$)ln 2 – $\frac{53}{32}$ $\zeta(3)$ $\overline{}$ *α*6 *π*2
		- Atoms may be considered "perturbative"

Δ*E me* = 7 12 *α*⁴ − (8 9 + ln 2 $\overline{2}$ $\frac{\alpha^5}{\pi} - \frac{5}{24}$ $\alpha^6 \ln \alpha +$ $-\frac{7\alpha^7}{\alpha}$ 8*π* $\ln^2 \alpha +$ 17 3 $\ln 2 - \frac{217}{00}$ ⁹⁰) *α*7 *π* $\ln \alpha + O(\alpha^7) \longrightarrow$

Feynman diagrams do not have bound state poles at any finite order in *α*

H(*t*)|*M*, *P*, *t*⟩ = *M*² + *P*² |*M*, *P*, *t*⟩ *M*: Rest mass *P*: CM momentum

Fock expansion in terms of e^-, e^+, γ_T constituents **Note:** $γ_T$ are transversely polarized photons

 $\langle k \rangle e^+(-k)$ and $\phi_{e^-e^+}$ satisfies the Schrödinger eq.

 $\sinh b$ inding energy $E_B \equiv M - 2m_e$

Positronium: The $|e^-e^+\rangle$ Fock state dominates at $P=0$,

Hamiltonian eigenstates (QED) 3

$$
H(t) | M, P, t \rangle = \sqrt{M^2 + P^2} | M, P, t \rangle
$$

$$
|M, P, t\rangle = \sum_{j} \phi_{j} | \{e^{-}\}, \{e^{+}\}, \{\gamma_{T}\}\rangle_{j}
$$

$$
|M, P = 0, t = 0\rangle \simeq \int \frac{d^3k}{2E_k(2\pi)^3} \phi_{e^-e^+}(k) |e^-(k)|
$$

$$
\left[-\frac{\nabla^2}{m_e} - \frac{\alpha}{|x|}\right]\phi_{e^-e^+}(x) = E_B \phi_{e^-e^+}(x) \quad \text{with}
$$

Questions: Does the potential $-\alpha/|x|$ remain instantaneous when $|P| \gg M$? [Yes] Do other Fock states than $|e^-e^+\rangle$ contribute when $|P| \gg M$? [Yes]

⁴ Instantaneous potential (QED)

No physical particle can move faster than light. Gauge theory Lagrangians lack $\partial_t A^0$ and $\nabla \cdot A$ terms. $\implies A^0$ and A_L do not propagate in space-time. They are gauge dependent: $\nabla \cdot A(t, x) = 0$ Coulomb gauge $A^{0}(t, x) = 0$ Temporal gauge

 $E_L(t, x) |phys\rangle = -\nabla_x |dy\rangle$

-
-
-
- Gauge condition for all *x* at the same *t* induces an instantaneous potential
- Consider here temporal gauge: $E = -\partial_t A$ (quantization without constraints) Invariance of physical states under *t*-independent gauge transformations requires:
- $(\nabla \cdot \mathbf{E} e\psi^{\dagger}\psi) |phys\rangle = 0$ Determines E_L from instantaneous electron positions:

$$
\frac{e}{4\pi |x-y|} \psi^{\dagger} \psi(t,y) |phys\rangle
$$

Higher Fock state (QED) 5

QED: $|e^-e^+\gamma_T\rangle$ Fock state contributes for $P > 0$, and subtracts the large Coulomb energy, ensuring $E = \sqrt{M^2 + P^2}$

The Poincaré covariance of atoms is realised dynamically.

M. Järvinen, Phys. Rev. D71 (2005) 085006 [hep-ph/0411208]

Lorentz contraction

The Coulomb potential $\sim -\alpha^2 E/4$ grows with *P*, wheras excitation energies $\propto 1/P$?

- The QCD Lagrangian \mathcal{L}_{OCD} lacks the confinement scale $\Lambda_{OCD} \sim 1 \text{ fm}^{-1}$
- The scale may be introduced, preserving \mathscr{L}_{OCD} , through a boundary condition

F. Gross, et al., Eur.Phys.J.C 83 (2023) 1125 [2212.11107].

Λ_{OCD} from a boundary condition (I) ⁶

C.f. the "Bag model": $\mathcal{L}_{bag} = (\mathcal{L}_{QCD} - B) \theta(bag)$ A. Chodos, et al., Phys. Rev. **D9** (1974) 3471

Lattice QCD indicates the emergence of a color string between quarks.

Λ_{QCD} from a boundary condition (II)

In $A_a^0 = 0$ gauge the longitudinal color electric field is constrained by *a* $= 0$

 $(\nabla \cdot \mathbf{E}_{L}^{a} + gf_{abc}A_{b} \cdot \mathbf{E}_{c} - g\psi^{\dagger}T^{a}\psi) |phys\rangle = 0$

$$
E_L^a(x) | phys\rangle = \nabla_x \int dy \left[\kappa \, x \cdot y + \frac{g}{4\pi |x-y|} \right] \left[f_{abc} A_b \cdot E_c(y) - \psi^{\dagger} T^a \psi(y) \right] |phys\rangle
$$

Paul Hoyer ICHEP2024 $\kappa \neq 0$ provides a confining, instantaneous potential,

For color singlet states $|phys\rangle$ the (total) color octet field $E_L^a(t,x)$ cancels in the sum over the quark and gluon colors (N/A in QED).

allowing a (unique) homogeneous solution (boundary condition) $\propto \kappa$,

-
-
- *L*
- Hence $E_{L}^{a}(t, x \rightarrow \infty)$ need not vanish separately for each color component in $|phys\rangle$, $L^{a}(t, x \rightarrow \infty)$ need not vanish separately for each color component in $|phys\rangle$

while preserving Poincaré invariance.

⁸ Summary

is required for bound states to become a QFT textbook topic.

- 1. A systematic method for QED and QCD bound states, based on the action,
	- *Cf.* the derivation of the perturbative S-matrix using the Interaction Picture.
		-

a $= 0$

2. The Poincaré covariance of equal-time bound states merits attention.

3. The confinement scale Λ_{QCD} can be introduced, maintaining \mathscr{L}_{QCD} , through a boundary condition on the gauge field in $A_a^0 = 0$ gauge.

PH: 2101.06721, 2304.11903

