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“The notion of the quantum state … seems to fade from view when doing QFT.”
A.S. Blum, Stud. Hist. Phil. Sci. B60 (2017) 46  [2011.05908]

Bound states are central in the SM
QED atoms, QCD  hadrons

But they are not found in QFT textbooks. 
Cf. the S-matrix (the Interaction Picture).



2Scattering amplitudes vs. Bound states

 The perturbative S-matrix expands around   (free) states.𝒪(α0)

Atoms are perturbed around initial bound states with  wave functions:𝒪(α∞)

Schrödinger equation, Bethe-Salpeter equation, … The choice is not unique since  
may be shuffled from the initial state

𝒪(αn)

Caswell & Lepage (1978)

Feynman diagrams do not have bound state poles at any finite order in α
Atoms may be considered “non-perturbative”

Positronium hyperfine splitting  is given by a power expansion in ΔE = M(3S1) − M(1S0) α

Atoms may be considered “perturbative”

ΔE
me

=
7
12

α4 − (8
9

+
ln 2
2 ) α5

π
−

5
24

α6 ln α + [1367
648

−
5197
3456

π2 + (221
144

π2 +
1
2 )ln 2 −

53
32

ζ(3)] α6

π2

−
7α7

8π
ln2 α + (17

3
ln 2 −

217
90 ) α7

π
ln α + 𝒪(α7)

⟹

⟹



Paul Hoyer ICHEP2024

3Hamiltonian eigenstates (QED)
H(t) |M, P, t⟩ = M2 + P2 |M, P, t⟩ M: Rest mass P: CM momentum

|M, P, t⟩ = ∑
j

ϕj |{e−}, {e+}, {γT}⟩j
Fock expansion in terms of  constituents 
Note:  are transversely polarized photons

e−, e+, γT
γT

Positronium:

|M, P = 0, t = 0⟩ ≃ ∫
d3k

2Ek(2π)3
ϕe−e+(k) |e−(k)e+(−k)⟩ and  satisfies the Schrödinger eq.ϕe−e+

[ −
∇2

me
−

α
|x | ]ϕe−e+(x) = EB ϕe−e+(x) with binding energy EB ≡ M − 2me

Questions:   Does the potential  remain instantaneous when  ?    [Yes] 
                    Do other Fock states than  contribute when  ?  [Yes]

−α/ |x | |P | ≫ M
|e−e+⟩ |P | ≫ M

The  Fock state dominates at P = 0,|e−e+⟩



4Instantaneous potential (QED)

No physical particle can move faster than light.

Gauge theory Lagrangians lack  and  terms. 
    and  do not propagate in space-time. They are gauge dependent:

∂tA0 ∇ ⋅ A
⟹ A0 AL

  Coulomb gauge 

       Temporal gauge

∇ ⋅ A(t, x) = 0
A0(t, x) = 0

Gauge condition for all x at the same t 
induces an instantaneous potential

Consider here temporal gauge:     (quantization without constraints)E = − ∂tA
Invariance of physical states under t-independent gauge transformations requires:

(∇ ⋅ E − eψ†ψ) |phys⟩ = 0 Determines EL from instantaneous electron positions:

EL(t, x) |phys⟩ = − ∇x ∫ dy
e

4π |x − y |
ψ†ψ(t, y) |phys⟩
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5Higher Fock state (QED)

⟶

P = 0 P >> M

The Coulomb potential  grows
with P, wheras excitation energies ∝ 1/P ?

∼ − α2E/4

The Poincaré covariance of atoms
is realised dynamically.

Boost

∼ 1/αme 1/αE

QED:   Fock state contributes for , and subtracts 

            the large Coulomb energy, ensuring  

|e−e+γT⟩ P > 0
E = M2 + P2

M. Järvinen, Phys. Rev. D71 (2005) 085006  [hep-ph/0411208]

Lorentz contraction
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6 from a boundary condition (I)ΛQCD

The QCD Lagrangian  lacks the confinement scale ℒQCD ΛQCD ∼ 1 fm−1

The scale may be introduced, preserving , through a boundary conditionℒQCD

C.f. the “Bag model”: ℒbag = (ℒQCD − B) θ(bag)

9

Perturbative 
vacuum

QCD 
vacuum

Bag pressure B

FIG. 3. Sketch of the MIT Bag Model [24]. The kinetic pressure of the quarks balances the pressure B of the color field in the
QCD vacuum.

amplitude A(s, t) tends to peak in the forward direction, t ' 0. This is described by “Regge exchange”,

A(s ! 1, t . 0 fixed) ' �(t)s↵(t) ↵(t) = ↵0 + ↵0t (2.1)

The exchanged ”Reggeon” may be viewed as an o↵-shell (t  0) hadron. Data shows that Regge trajectories are
approximately linear, with a universal slope ↵0 ' 0.9 GeV2. Regge exchange is illustrated in Fig. 4(a) for ⇡+⇡� !
⇡+⇡�, to which the ⇢ trajectory ↵⇢(t) ' .5 + .9 t/GeV2 contributes.

In a Chew-Frautschi plot the spin J of hadrons is plotted versus their squared masses M2. Remarkably, the hadrons
lie on the linear Regge trajectories determined by scattering data for t  0, i.e., ↵(M2) = J . This is shown for the
⇢ trajectory states in Fig. 4(b)). Other hadrons with light (u, d, s) valence quarks such as nucleons and hyperons
similarly lie on linear Regge trajectories. The reason for this is not understood, but it has inspired string-like models
of hadrons, with the valence (di)quarks connected by a color flux tube [29, 30].

π+ π+

π– π–
π– π–

s →

→ t

≃
s → ∞, t fixed

π+ π+

α(t)

(a) (b)

FIG. 4. (a) Scattering amplitude for ⇡
+
⇡
� ! ⇡

+
⇡
� with ⇢ Regge exchange at high energies. (b) Chew-Frautschi plot of

hadron spins J vs. their M
2, and the Regge trajectory ↵⇢(t). Plot from [31].

Duality is a pervasive feature of hadron dynamics. In hadron scattering duality implies that s-channel resonances
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Fig. 28 The suppression of QCD vacuum fields, as represented by the
energy density, from the region between a quark–antiquark meson (top)
or three-quark baryon (bottom). Quark positions are illustrated by the
colored spheres. The separation of the quarks in the meson are 0.50 fm
(left), 1.00 fm (middle), and 1.50 fm (right). The baryon frames illus-
trate the spherical cavity (or bag) observed at small quark separations
of 0.27 fm from the center (left), the development of a filled-∆ shape at
moderate separations of 0.42 fm (middle) and finally the emergence of

a Y-shape flux tube (right) at large quark separations of 0.72 fm from
the system center [404]. The surface plot illustrates the reduction of the
vacuum energy density in a plane passing through the centers of the
quarks. The vector field illustrates the gradient of this reduction. The
tube joining the quarks reveals the positions in space where the vacuum
energy density is maximally expelled and corresponds to the “flux tube”
of QCD

via a variational method with explicit B-meson operators.
These interpolating fields mix with the traditional flux-tube
operators in a matrix of correlation functions. Upon solving
for the energy eigenstates, mixed states with their associated
avoided level crossings are observed.

Following the notation of Ref. [418], the calculation
proceeds as follows. The QQ static quark operator con-
nected with an optimized spatially smeared flux-tube opera-
tor Vt (r, 0) from position 0 to r at Euclidean time t is

Q(r,t)
γ · r
r

Vt (r, 0) Q(0,t), (4.122)

where γ · r/r selects the spin-symmetric state to be com-
bined with the symmetric gluonic string Vt (r, 0), enabling
mixing with two pseudoscalar B mesons. Note, the anti-
symmetric spin-combination is obtained via γ · r/r → γ5
and yields the same energy levels, as both spin cases are
calculated from the same Wilson loop.

Similarly, the BB meson interpolating field for a pseu-
doscalar B meson at r and a B meson at 0 at Euclidean time
t is

Q(r,t) γ5 qi(r,t) q̄
i
(0,t) γ5 Q(0,t), (4.123)

where qi(r,t) annihilates the light-quark flavor, i . The four
elements of the correlation matrix are obtained from the four
combinations of these two operators.

Contracting the heavy-quark operators in the standard
flux-tube operators provides

[
Q(r,t)

γ · r
r

Vt (r, 0)Q(0,t)

]†
Q(r,0)

γ · r
r

V0(r, 0)Q(0,0)

= 2 tr
{
V †
t (r, 0)Ur(t, 0) V0(r, 0)U

†
0 (t, 0)

}
≡

(4.124)

where the heavy-quark mass dependence has been sup-
pressed for simplicity. Here Ur(t, 0) denotes the product of
time-oriented links at the position r from time 0 to t and the
trace is over color indices. This is the standard Wilson loop
depicted by the r (horizontally) by t (vertically) rectangle in
Eq. (4.124).

Similarly, contracting out the quark field operators in the
mixed correlator provides

Q(0,t) γ5 qi(0,t) q̄
i
(r,t) γ5 Q(r,t) Q(r,0)

γ · r
r

V0(r, 0) Q(0,0)

≡ = (4.125)

where the wavy line depicts a light quark operator. Finally,
contraction of the quark operators in the BB correlator pro-
vides

123

Lattice QCD indicates the emergence 
of a color string between quarks.

F. Gross, et al., Eur.Phys.J.C 83 (2023) 1125  [2212.11107]

A. Chodos, et al., Phys. Rev. D9 (1974) 3471
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7 from a boundary condition (II)ΛQCD

In  gauge the longitudinal color electric field is constrained byA0
a = 0

Ea
L(x) |phys⟩ = ∇x ∫ dy[κ x ⋅ y +

g
4π |x − y | ][fabcAb ⋅ Ec(y) − ψ†Taψ(y)] |phys⟩

(∇ ⋅ Ea
L + gfabcAb ⋅ Ec − gψ†Taψ) |phys⟩ = 0

For color singlet states  the (total) color octet field (t,x) 
cancels in the sum over the quark and gluon colors  (N/A in QED). 

|phys⟩ Ea
L

Hence  need not vanish separately for each color component in , 
allowing a (unique) homogeneous solution (boundary condition) ,

Ea
L(t, x → ∞) |phys⟩

∝ κ

 provides a confining, instantaneous potential,κ ≠ 0
while preserving Poincaré invariance.
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8Summary

1. A systematic method for QED and QCD bound states, based on the action, 
is required for bound states to become a QFT textbook topic.

Cf. the derivation of the perturbative S-matrix using the Interaction Picture.

3. The confinement scale  can be introduced, maintaining ,  
through a boundary condition on the gauge field in  gauge. 

ΛQCD ℒQCD
A0

a = 0

2. The Poincaré covariance of equal-time bound states merits attention.

PH: 2101.06721, 2304.11903 


