

# Study of charmonium and associated charmonium production in pp collisions at LHCb

**Vsevolod Yeroshenko IJCLab, Université Paris-Saclay** *on behalf of LHCb collaborations* 

ICHEP 2024 19/07/2024, Prague



## Charmonium system

- Charmonium bound state of  $c\overline{c}$  quark pair
- Non-relativistic QCD object
  - Velocity  $v^2 \approx 0.3$
  - three intrinsic scales  $m \gg mv \gg mv^2$
- Ideal probe for different QCD scales
- Decays to
  - $\eta_c(1S)$ ,  $\eta_c(2S)$ : hadrons and  $\gamma\gamma$
  - $J/\psi$ ,  $\psi(2S)$ :  $\mu^+\mu^-/e^+e^-$  or hadrons
  - $\chi_{cJ}$ :  ${}^3S_1\gamma$ ,  ${}^3S_1\pi^+\pi^-$  or hadrons
  - $h_c$ :  ${}^1S_0\gamma$  or hadrons
- Robust charged hadron identification at LHCb
  - Access to all the charmonium states



#### **Charmonium production @ LHC**

- Main production origin  $\bullet$ 
  - **Prompt** (direct) hadroproduction

- Decay of higher resonances (feed-down)

PV

 $Z_{PV}$ 

 $\psi(2S)$  PV

S۱

ZSV

- Production in b-hadron decays (**non-prompt**)

Charmonium is a challenge both for theory and for experiment



# **Charmonium production models**

- Assumption: **factorization** between the scales
  - Hard-scale  $Q\overline{Q}$  pair production expansion in powers of  $\alpha_{s}$
  - **Soft-scale hadronization** non-perturbative, mostly extracted from data
- Main **models** 
  - Colour evaporation model (CEM): application of quark-hadron duality; only the invariant mass matters;
  - Colour-singlet model (CS): intermediate  $Q\overline{Q}$  state is colourless and has the same  $J^{PC}$ as the final-state quarkonium;
  - Colour-octet model (CO) (encapsulated in NRQCD): all viable colours and  $J^{PC}$ allowed for the intermediate  $Q\overline{Q}$  state;

NRQCD is found to be the most used, because it is based on an EFT and can be improved systematically





#### Charmonium production via the decay to $p\overline{p}$

- Measurement of charmonia production reconstructed in decays to  $p\overline{p}$ 
  - Previous measurement using LHCb 2015 and 2016 data [Eur. Phys. J. C 80 (2020) 191]
- Improved  $\eta_c$  production measurement with the LHCb 2018 data
  - Extended  $p_{\rm T}$  range
  - **Differential in** *y* for the first time
- Cross-section in kinematic range  $5.0 < p_T < 14.0$  GeV/c and  $2.0 < y^{J/\psi} < 4.0$

-  $\sigma_{\eta_c} = 1815 \pm 189 \pm 120 \pm 192$ nb

#### Submitted to arXiv

**Both CS and CO predictions overshoot** the data at low  $p_{\rm T}$ 

No evidence of CO contribution

Eur. Phys. J. C 80 (2020) 191  $/dp_{\rm T}$ dp LHCb  $rac{d\sigma_{\eta_c/}}{d\sigma_{J/\psi}}$  $\sqrt{s} = 13 \,\mathrm{TeV}$ 2.0 < y < 4.50.5 12 10 **Overlaping**  $p_{\rm T}$  range Prompt production LHCb-PAPER-2024-004 10<sup>4</sup> LHCb Preliminary · LHCb measurement  $dp_{_{T}}$  $^{dp}$ LHCb, 2.2 fb<sup>-</sup> HCb measurement NLO NRQCD CS  $\sqrt{s} = 13$  TeV NLO NRQCD CS  $d\sigma_{J/\psi}$  $d\sigma_{\eta_{e_{\sigma_{i}}}}$ NLO NRQCD CS+CO 2.0 < y < 4.0NLO NRQCD CS+CO Modified NRQCD Modified NRQCD LHCb Preliminary LHCb,  $2.2 \, {\rm fb}^{-1}$  $\sqrt{s} = 13$  TeV 2.0 < y < 4.0 $p_{\rm T}^{15}$  [GeV/c] 10 10 15

 $d\sigma_{\eta_e}/dp_{\rm T}$  [nb / GeV/c]

 $10^{3}$ 

 $10^{2}$ 

10





#### Charmonium production via the decay to $p\overline{p}$

- Upper limits for prompt  $\eta_c(2S)$  and  $h_c(1P)$  @ 95% CL
  - $\sigma_{h_c(1P)} \times \mathscr{B}_{h_c(1P) \to p\bar{p}} < 0.401 \text{ nb}$
  - $\sigma_{h_c(1P)} \times \mathscr{B}_{h_c(1P) \to p\bar{p}} < 0.375 \text{ nb}$
- Measument of the  $\eta_c$  production in b-decays

- 
$$\mathcal{B}_{b \to \eta_c X} = (5.64 \pm 0.31 \pm 0.18 \pm 0.73) \times 10^{-3}$$

- New  $\chi_{c0}, \chi_{c1}$  and  $\chi_{c2}$  production measurement in *b*-decays

- 
$$\mathscr{B}_{b \to \chi_{c0} X} = (3.05 \pm 0.54 \pm 0.08 \pm 0.29) \times 10^{-3},$$

- $\mathscr{B}_{b \to \chi_{c1}X} = (5.11 \pm 1.20 \pm 0.14 \pm 0.50) \times 10^{-3}$
- $\mathscr{B}_{b \to \chi_{c2} X} = (1.54 \pm 1.13 \pm 0.04 \pm 0.15) \times 10^{-3}$
- Improvement in precision for  $\chi_{c0}$ ,  $\chi_{c1}$

Three uncertainties stand for statistical, systematic and uncertainty due to the branching fraction of charmonia decays to  $p\overline{p}$ 



# Associated production

- The production of two particles A and B in the same pp collision can be due to
  - Single-Parton Scattering (SPS):
    - the two particles are produced a single interaction of two partons
    - kinematics is correlated (neglected emission of additional gluons)
  - **Double-Parton Scattering** (DPS):
    - simultaneous interaction of two pairs of partons, assumed to be uncorrelated
    - DPS "Pocket formula":  $\sigma^{pp \to AB}$ -, where *m* is a symmetry factor  $\sigma_{eff.DPS}$
    - can be estimated from single quarkonia production

#### Main challenge is to separate SPS and DPS experimentally





**Single-Parton Scattering** 



**Double-Parton Scattering** 





# $J/\psi + J/\psi$ production

 Cross-section in the kinematic range  $p_{\rm T}^{J/\psi} < 14 \text{ GeV/c and } 2.0 < y^{J/\psi} < 4.5$ 

- 
$$\sigma_{di-J/\psi} = 16.36 \pm 0.28_{stat} \pm 0.88_{syst}$$
 nb

**Differential study** in bins of

$$- \Delta y, \Delta \phi \\- p_{T}^{J/\psi}, y^{J/\psi}, \\- p_{T}^{di-J/\psi}, y^{di-J/\psi}, m_{di-J/\psi} \\\\- \mathscr{A}_{p_{T}} = \left| \frac{p_{T}^{J/\psi_{1}} - p_{T}^{J/\psi_{2}}}{p_{T}^{J/\psi_{1}} + p_{T}^{J/\psi_{2}}} \right|$$

• SPS and DPS contributions are separated



 $d\sigma/d\Delta y$ 

 $d\sigma/d\Delta\phi$ 







### $J/\psi + J/\psi$ production

- **DPS contribution** is extracted from  $\Delta y$  distribution: ullet
  - **SPS** contribution is **negligible** in range  $1.8 < \Delta y < 2.5$
  - contribution from exotic **X(6900)** is small
  - data-driven template for DPS

$$\sigma_{eff} = \frac{1}{2} \frac{\sigma_{J/\psi}^2}{\sigma_{di-J/\psi}^{DPS}} = 13.1 \pm 1.8_{stat} \pm 2.3_{syst} \text{ mb}$$

- Measurements are consistent with NLO\* CS prediction from Lansberg and Shao [Phys. Rev. Lett. 111, 122001]
- **Gluon TMDs are estimated for the first time** lacksquare
  - azimuthal angle of  $J/\psi$  in **Collins-Soper frame**

JHEP 2403 (2024) 088



 $d\sigma/d\Delta y$ 

 $d\sigma/d\Delta\phi$ 



 ${
m d}\sigma/{
m d}m_{{
m di}$ - $J/\psi}$ 



 $J/\psi + \psi(2S)$  production

 Cross-section in a kinematic range  $p_{T}^{J/\psi,\psi(2S)} < 14$  GeV/c and  $2.0 < y^{J/\psi,\psi(2S)} < 4.5$ 

-  $\sigma_{J/\psi-\psi(2S)} = 4.49 \pm 0.71_{stat} \pm 0.26_{syst}$  nb

- **Differential study** in bins of  $\Delta y, \Delta \phi, p_T^{J/\psi - \psi(2S)}, y^{J/\psi - \psi(2S)}, m_{J/\psi - \psi(2S)}$ 
  - Measurements are consistent with NLO\* CS prediction from Lansberg and Shao [Phys. Rev. Lett. 111, 122001]
- Ratio between  $J/\psi + \psi(2S)$  and  $J/\psi + J/\psi$ production

$$\mathscr{R} = \frac{\sigma_{J/\psi - \psi(2S)}}{\sigma_{J/\psi - J/\psi}} = 0.274 \pm 0.044_{stat} \pm 0.008_{syst}$$

Consistent with DPS prediction





 ${
m d}\sigma/{
m d}m_{J\!/\psi extsf{-}\psi(2S)}$ 

Prediction:  $\Re_{SPS} = 0.94 \pm 0.30$ SI D  $\mathcal{R}_{DPS} = 0.282 \pm 0.027$ 

### $J/\psi + \Upsilon(nS)$ production

 Cross-section in kinematic range  $p_{T}^{J/\psi(\Upsilon(nS))} < 10(30) \text{ GeV/c and } 2.0 < y < 4.5$ 

- 
$$\sigma_{J/\psi-\Upsilon(1S)} = 133 \pm 22_{stat} \pm 7_{syst} \pm 3_{\mathscr{B}} \text{ pb} (7.9\sigma)$$

-  $\sigma_{J/\psi-\Upsilon(2S)} = 76 \pm 21_{stat} \pm 4_{syst} \pm 7_{\mathscr{B}} \text{ pb} \quad (4.9\sigma)$ 

- **Differential study for**  $J/\psi + \Upsilon(1S)$  in bins of  $\Delta y, \Delta \phi, p_T^{J/\psi}, p_T^{\Upsilon(1S)}, p_T^{J/\psi-\Upsilon(1S)}$ , and  $m_{J/\psi-\Upsilon(1S)}$
- DPS contribution is extracted using SPS prediction from Shao and Zhang [Phys. Rev. Lett. 117, 062001]

$$\sigma_{eff} = \frac{\sigma_{J/\psi} \times \sigma_{\Upsilon(1S)}}{\sigma_{J/\psi-\Upsilon(1S)}^{DPS}} = 26 \pm 14_{stat} \pm 2_{syst} + 22_{sPS} \text{ mb}$$
$$\sigma_{eff} = \frac{\sigma_{J/\psi} \times \sigma_{\Upsilon(2S)}}{\sigma_{J/\psi-\Upsilon(2S)}^{DPS}} = 14 \pm 5_{stat} \pm 1_{syst} + 7_{sPS} \text{ mb}$$

First observation of  $J/\psi + \Upsilon(1S)$  associated production More data are needed to separate and test SPS CO mechanism



| Signal                            | Raw yields  | $N_{ m cor}$  | Signi |
|-----------------------------------|-------------|---------------|-------|
| $J/\psi - \Upsilon(1S)$           | $76 \pm 12$ | $840 \pm 140$ | 7     |
| $J\!/\!\psi\!\!-\!\!\Upsilon(2S)$ | $30\pm7$    | $370\pm100$   | 4     |
| $J\!/\!\psi\!\!-\!\!\Upsilon(3S)$ | $10\pm 6$   | -             | 1     |



### Associated production

- Effective cross-section  $\sigma_{eff}$  is assumed to be universal
  - all results are consistent with each other and other existing measurements
  - some results have large uncertainties

#### **Good agreement**

More data needed for precise test

|              | <u>JHEP 2308 (20</u>       |
|--------------|----------------------------|
|              |                            |
|              | <i>pp</i> @13 TeV          |
| <b>→●</b> →  | LHCb $(J/\psi - Y)$        |
| <b>—————</b> | LHCb $(J/\psi - Y)$        |
| н            | LHCb ( $J/\psi$ - $J/\psi$ |
|              | <i>pp</i> @8 TeV           |
| •••          | ATLAS $(J/\psi - Z)$       |
| • <b>•</b> • | ATLAS ( $J/\psi$ -J        |
| <b></b>      | LHCb ( $\Upsilon(1S)$ -    |
|              | <i>pp</i> @7 TeV           |
|              | ATLAS $(J/\psi - W)$       |
|              | CMS $(J/\psi - J/\psi)$    |
|              | LHCb $(J/\psi - D^0)$      |
|              | LHCb $(D^0-D^0)$           |
| <b></b>      | ATLAS ( $W^{\pm}$ -2       |
| <b>—</b>     | CMS ( $W^{\pm}$ -2 jet     |
|              | <i>рр</i> @1.96 Т          |
| •            | D0 $(J/\psi - Y)$          |
| <b>⊷</b> ∎⊶  | D0 $(J/\psi - J/\psi)$     |
| <b>•••</b> • | D0 (γ-3 jets)              |
|              | <i>pp@</i> 1.8 Te          |
|              | CDF (4 jets)               |
| <b>⊢</b> ∎-  | CDF ( $\gamma$ -3 jets)    |
|              |                            |
|              |                            |
| 0 20 40      | 60 80                      |
|              |                            |



# Summary

- Charmonia production is an essential probe for QCD at different scales
- Many new results from LHCb
- Extended  $\eta_c$  production measurement
  - <u>LHCb-PAPER-2024-004</u>
- Associated charmonia production measurements
  - $J/\psi + J/\psi$ : <u>JHEP 2403 (2024) 088</u>
  - $J/\psi + \psi(2S)$  : <u>JHEP 2405 (2024) 259</u>
  - $J/\psi + \Upsilon(nS)$  : <u>JHEP 2308 (2023) 093</u>







# Backup

### $J/\psi + J/\psi$ production

- Gluon TMD can be probed using  $\phi_{CS}$  distribution
  - azimuthal angle of  $J/\psi$  in Collins-Soper frame
- SPS production  $\sim a + b \times \cos 2\phi_{CS} + c \times \cos 4\phi_{CS}$ 
  - coefficients encode information on TMD
- Calculations are valid for  $p_{T}^{di-J/\psi} < \langle m_{di-J/\psi} \rangle / 2 = 4.1 \text{ GeV/c}$ 
  - $\langle \cos 2\phi_{CS} \rangle = b/2a = -0.029 \pm 0.050_{stat} \pm 0.009_{svst}$
  - $\langle \cos 4\phi_{CS} \rangle = c/2a = -0.087 \pm 0.052_{stat} \pm 0.013_{syst}$

#### The first estimate for TMD

Theory shows some discrepancy, more data are needed



